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Why Event Generation?

Vast amount of data collected by
collider experiments

Standard Model is probed

Theoretical predictions (simulation)
need to match experimental
statistics




Why ML Event Generation?

6.0E+34

5.0E+34
After high luminosity runs — ~ 20 times -

as much data ‘7’2 4.0E+34
S,

Theoretical predictions needs to be even 2
more precise (include higher correction =
terms) s

—  2.0E+34

1.0E+34

0.0E+00

e Peak luminosity =Integrated luminosity

| | | | i i i i i i 1 1 i i i i i i

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Year

Figure from https://web.archive.org/web/20220706170326/https://Inc-commissioning.web.cern.ch/schedule/images/LHC-nominal-lumi-projection.png

3500

- 3000
- 2500
- 2000
- 1500
- 1000

: 500

Integrated luminosity [fb]



Why ML Event Generation?

6.0E+34

5.0E+34
After high luminosity runs — ~ 20 times -

as much data pARPYIIER
S

Theoretical predictions needs to be even 2
more precise (include higher correction =
terms) s

—  2.0E+34

1.0E+34

But: Currently computationally 0.0E+00

expensive

e Peak luminosity =Integrated luminosity

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Year

Figure from https://web.archive.org/web/20220706170326/https://Inc-commissioning.web.cern.ch/schedule/images/LHC-nominal-lumi-projection.png

3500

- 3000
- 2500
- 2000
- 1500
- 1000

: 500

Integrated luminosity [fb]



Diffusion Models (CFM

Phase Space Latent Space

Xy ~ Po(Xp) ~ p1(xp)(= A(0,1))

ontinuous time evolution t

X
[

Evolution governed by v =

Figure from J.Ho et al.: arXiv:2006.11239



Diffusion Models (CFM)
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Raising Awareness for Uncertainties

Being precise = estimating
uncertainties



Raising Awareness for Uncertainties

Being precise = estimating
uncertainties

How can we account for network
uncertainties?




What about uncertainties?




How to Bayesianize - CFM

No Likelihood Loss
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How to Bayesianize - CFM

No Likelihood Loss

9), p(0))
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Concrete Application — End-to-End LHC

Z(— uu) + jets:

3 - 5 final state particles (including
jets)

12 - 20 dimensional phase space
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Percent level precision (comparable to
statistical uncertainty)

Uncertainty well-defined

To be precise

Z+1 jet exclusive
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To be precise

0.25° 743 jet exclusive
Percent level precision (comparable to = 0.20°
statistical uncertainty) v 0.15. — True
ER —— CFM
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5 0.10° — Train
Z
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Uncertainty well-defined

Surpasses INN precision (A. Butter et
al.: arXiv:2110.13632)




Concrete Application — Off-Shell processes

Precise simulation of ttbar decays critical
for LHC analyses
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Concrete Application — Off-Shell processes

Precise simulation of ttbar decays critical
for LHC analyses

Need to account for off shell processes

Including off-shell processes
= extremely costly
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Concrete Application — Off-Shell processes
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What’s the problem?

8 o2 — Off
N — On
=
=
5 10—4-J|Jf
Z.
1.3
5l51.0 ——

100 150
my [GEV]

200

Normalized
—
o
&

— Off

810—2 — Off
N —— On
E
s 107
Z.
=
13 o e
5l51.0F—=— —
0.7
50 100 150
m5 [GeV]
- — Off
© 10
N — On
<
=
5 107
Z.
1.31 ﬁ;ﬁfF Ff
5%1,0-;@%—- —
0.7
50 100 150
msy,, [GEV]

18



What’s the problem?
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Normalized

Normalized

How to not learn correction
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Normalized
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Normalized

Normalized
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How to not learn correction
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Diffusion Models (CFM) — revisit

Phase Space Latent Space

Xo ~ Po(Xp) x; ~ py(xp)

Continuous time evolution t

dx
dt

Evolution governed by v =
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Figure adapted from J.Ho et al.: arXiv:2006.11239



Diffusion Models (CFM)
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Direct Diffusion (DiDi)
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Direct Diffusion (DiDi) — Tails
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Also true for tails, with very little

training statistic
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Direct Diffusion (DiDi)

Reconstructed tbar mass learned to

O(1%) - O(10%)

Truth value within our uncertainties

Also true for tails, with very little
training statistic

Multiresonant structure taken into
account




Direct Diffusion (DiDi) — Migration
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Direct Diffusion (DiDi) — Staying put
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Understanding our Shortcomings
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Understanding our Shortcomings

Pofy
Pgen

Train classifier to learn w =

Allows us to check performance,
clustering and reweight distribution
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Understanding our Shortcomings
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And now what?

Generative ML shows great potential to speed-up LHC event generation

For end-to-end generation the CFM reaches state-of-the art precision

Bayesian Versions seems to estimate training uncertainty correctly

Direct Diffusion allows to morph two unknown, intractable distributions onto each
other

Successfully applied to generate full off-shell distributions from on-shell distributions
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