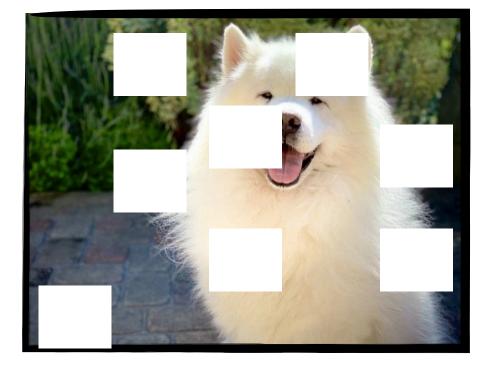
Can Contrastive Learning de-bias my Model? AIUPHYS 2023, Paris

Radi Radev CERN, Alex Wilkinson UCL / Fermilab

Self-Supervised Learning in Vision

- You have a lot of data but not many labelled examples
- Train some model that utilises the unlabelled data
- Then you can fine-tune the base model using the small labeled sample



Self-Supervised Learning in Vision

- You have a lot of data but not many labelled examples
- Train some model that utilises the unlabelled data
- Then you can fine-tune the base model using the small labeled sample

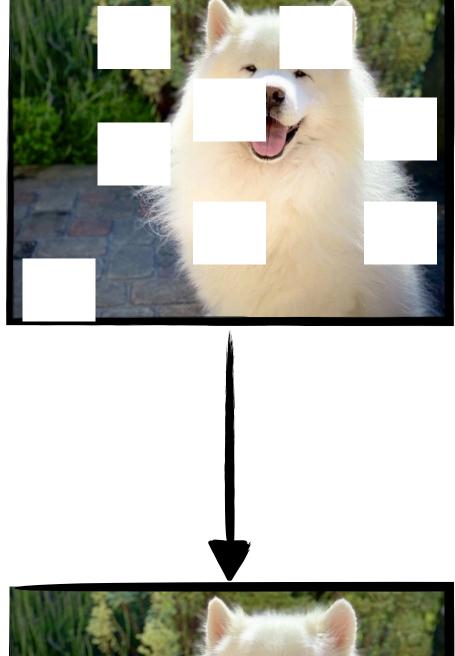


Illustration of MAE - vision foundation model

Self-Supervised Learning in Vision and HEP

- You have a lot of data but not many labelled examples
- Train some model that utilises the unlabelled data
- Then you can fine-tune the base model using the small labeled sample
- But HEP simulation comes with detailed information?
- It can help mitigate biases we have in our simulation

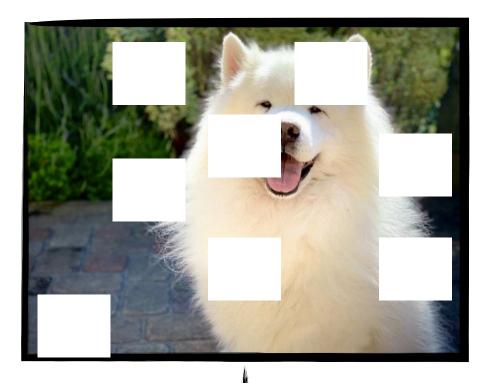


Illustration of MAE - vision foundation model

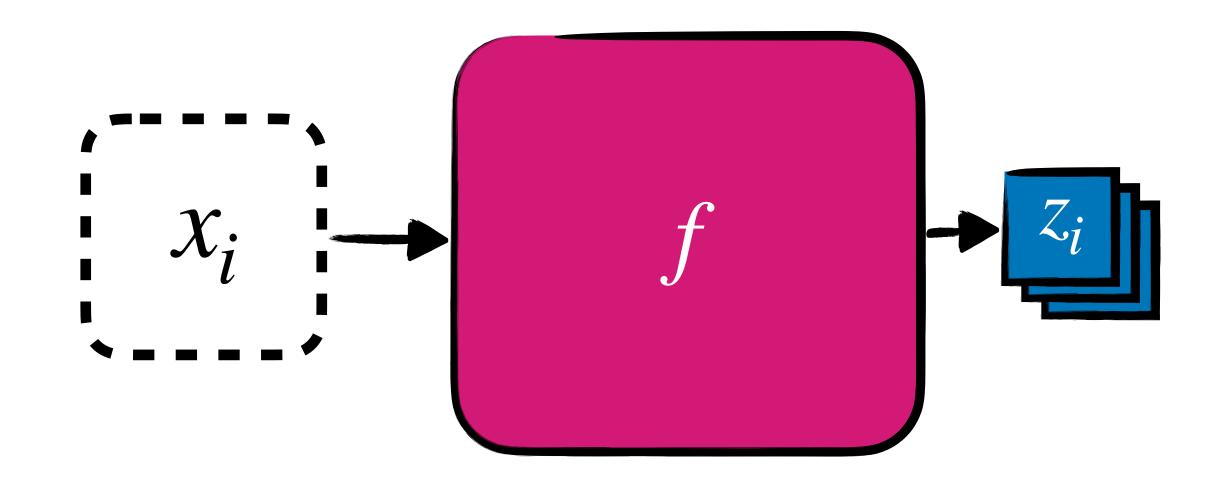
Mitigating Biases by Pretraining

We explore a method where we use a combination of detector systematics and handcrafted augmentations to learn a robust representation.

Our method is based roughly on SimCLR - Simple Framework for Contrastive learning of Visual Representations - 2002.05709

Contrastive Learning of Representations

Representations

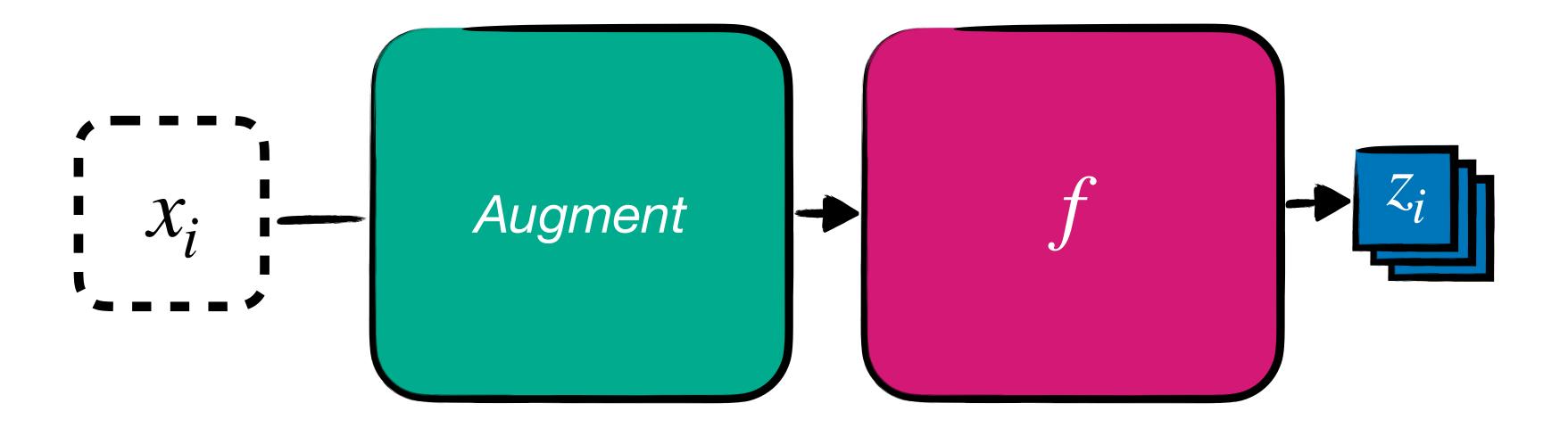


extract a vector representation z_i .

 z_i is a high-dimensional vector (in our case 768d)

Pass an event x_i through a neural network f to

Representations

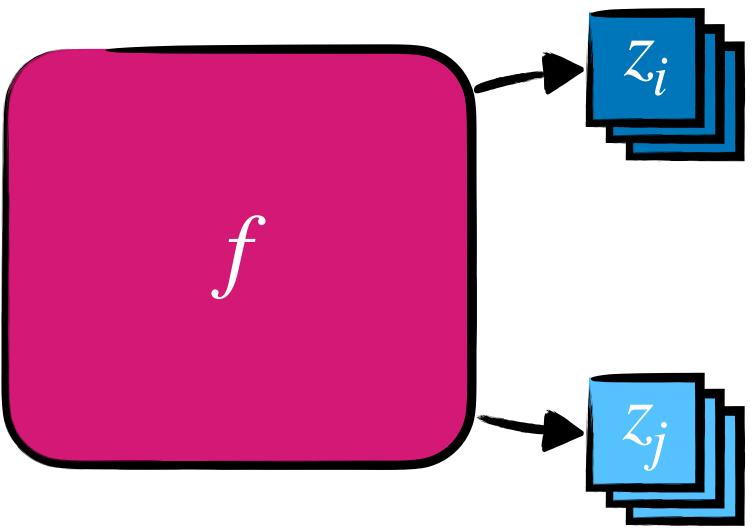


f to extract a different vector representation z_i .

Pass an augmented event x_i through a neural network

Contrastive Learning Scale Translate Mask Identity

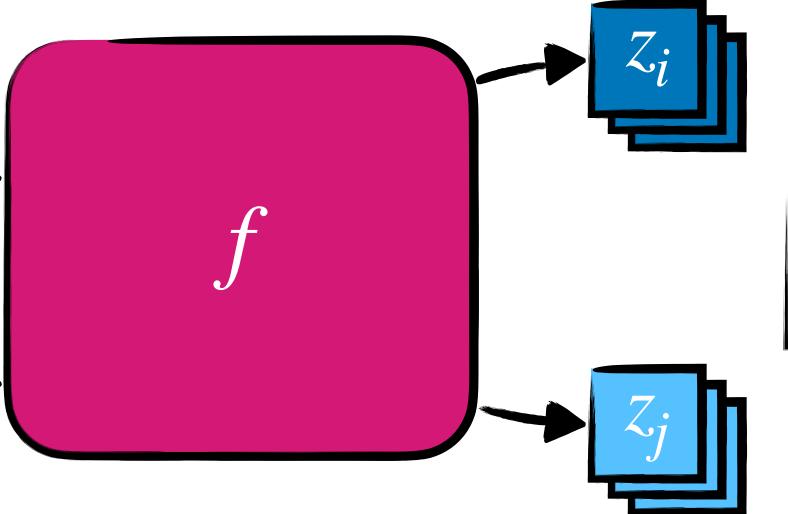
Pass pairs of **augmented events** through a **neural network** *f* to extract **vector representations.**



Contrastive Learning Scale Translate Mask Identity

Pass pairs of **augmented events** through a **neural network** *f* to extract **vector representations.**

Representations from different events - low similarity



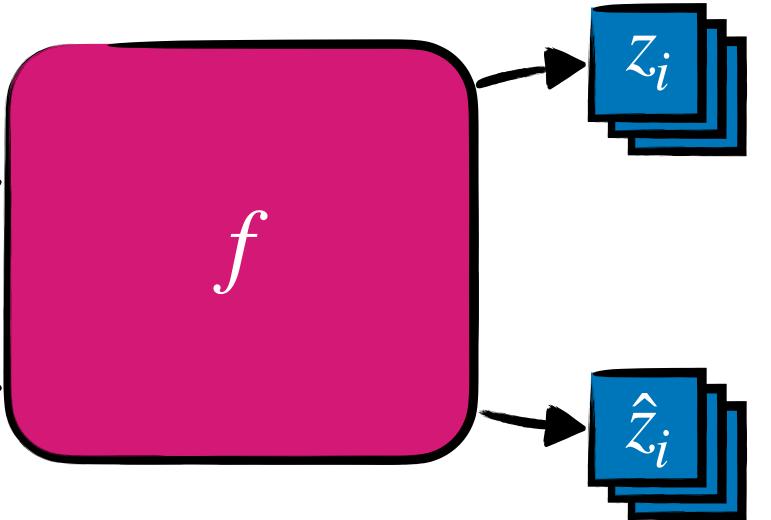
 $\sin(z_i, z_j) \approx 0$

Network Objective

Contrastive Learning Scale Translate Mask Identity

Pass pairs of **augmented events** through a **neural network** *f* to extract **vector representations.**

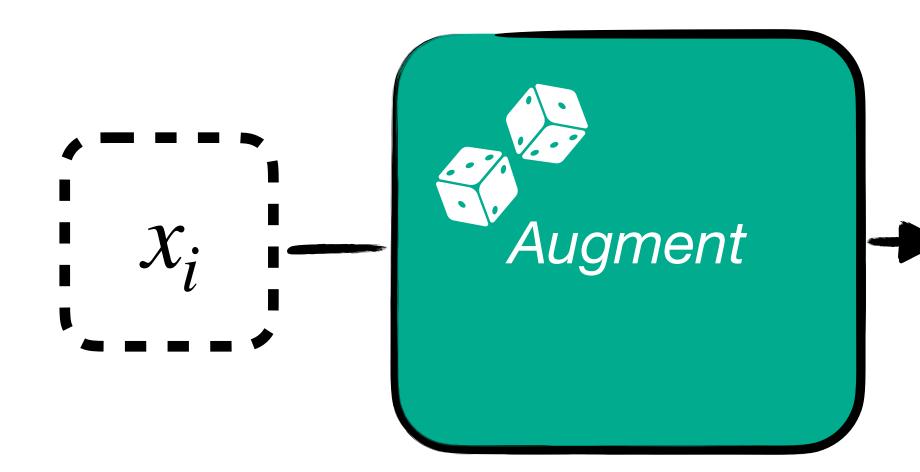
Representations from same event - high similarity



 $sim(z_i, \hat{z}_i) \approx 1$

Network Objective

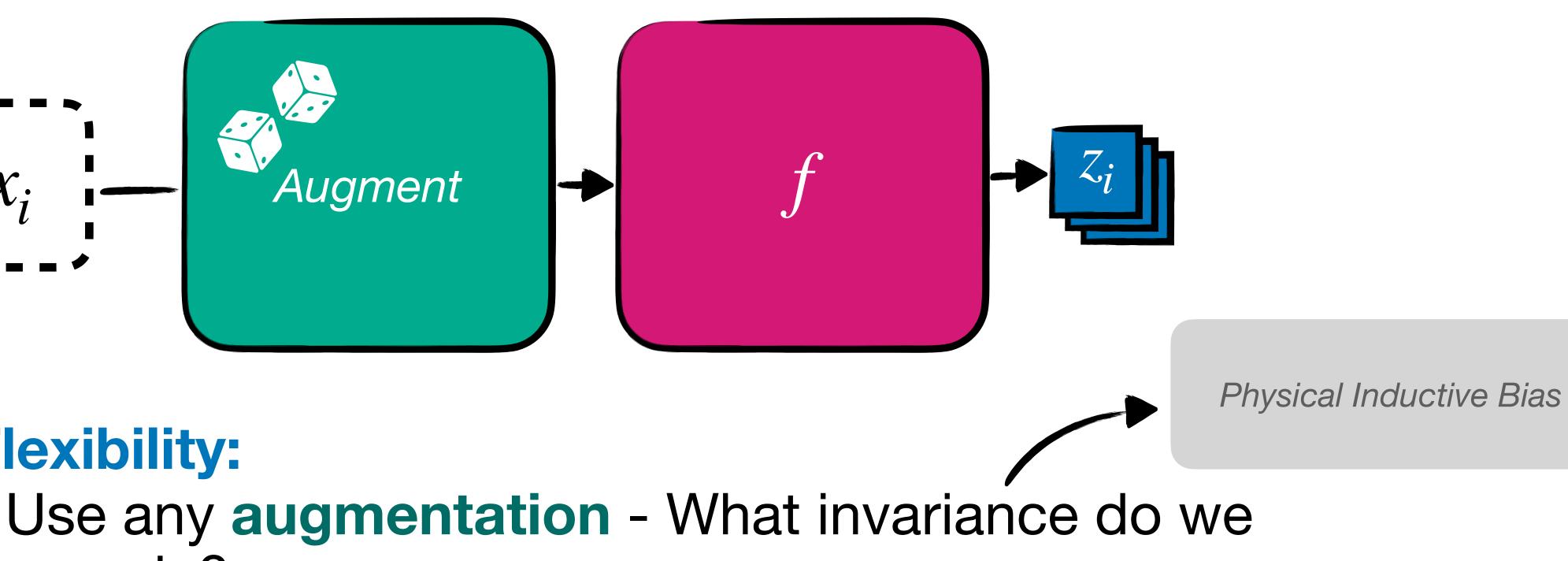
Contrastive Learning



Flexibility:

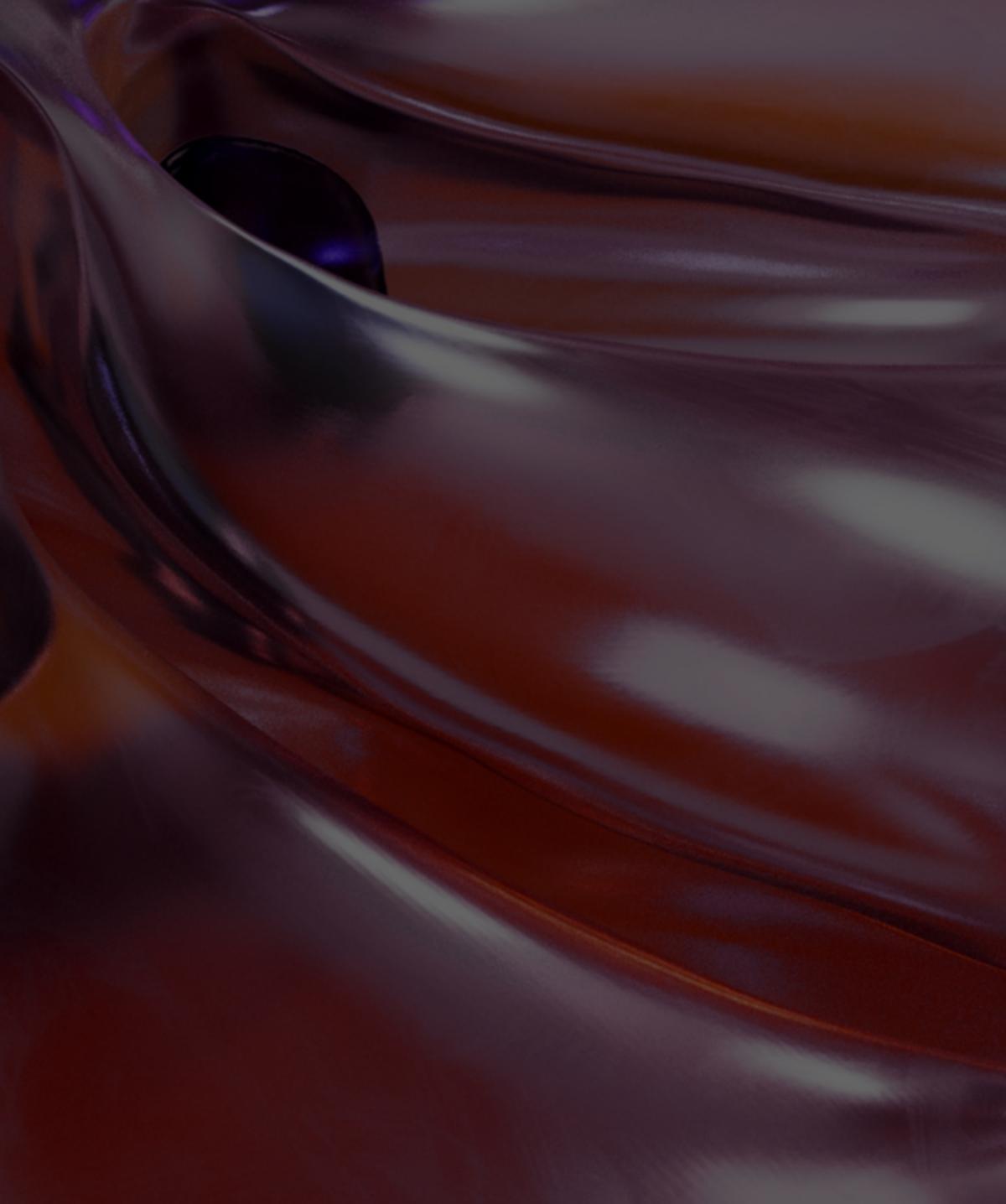
encode?

data structure of the event?



Use any neural network - What is the most natural

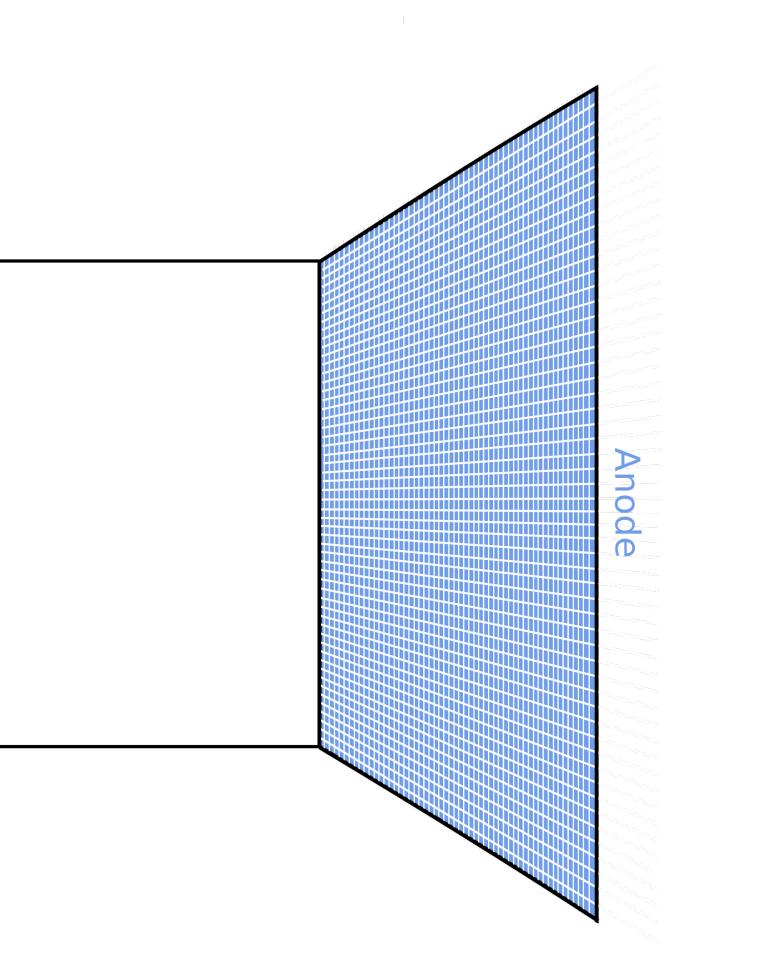
Data

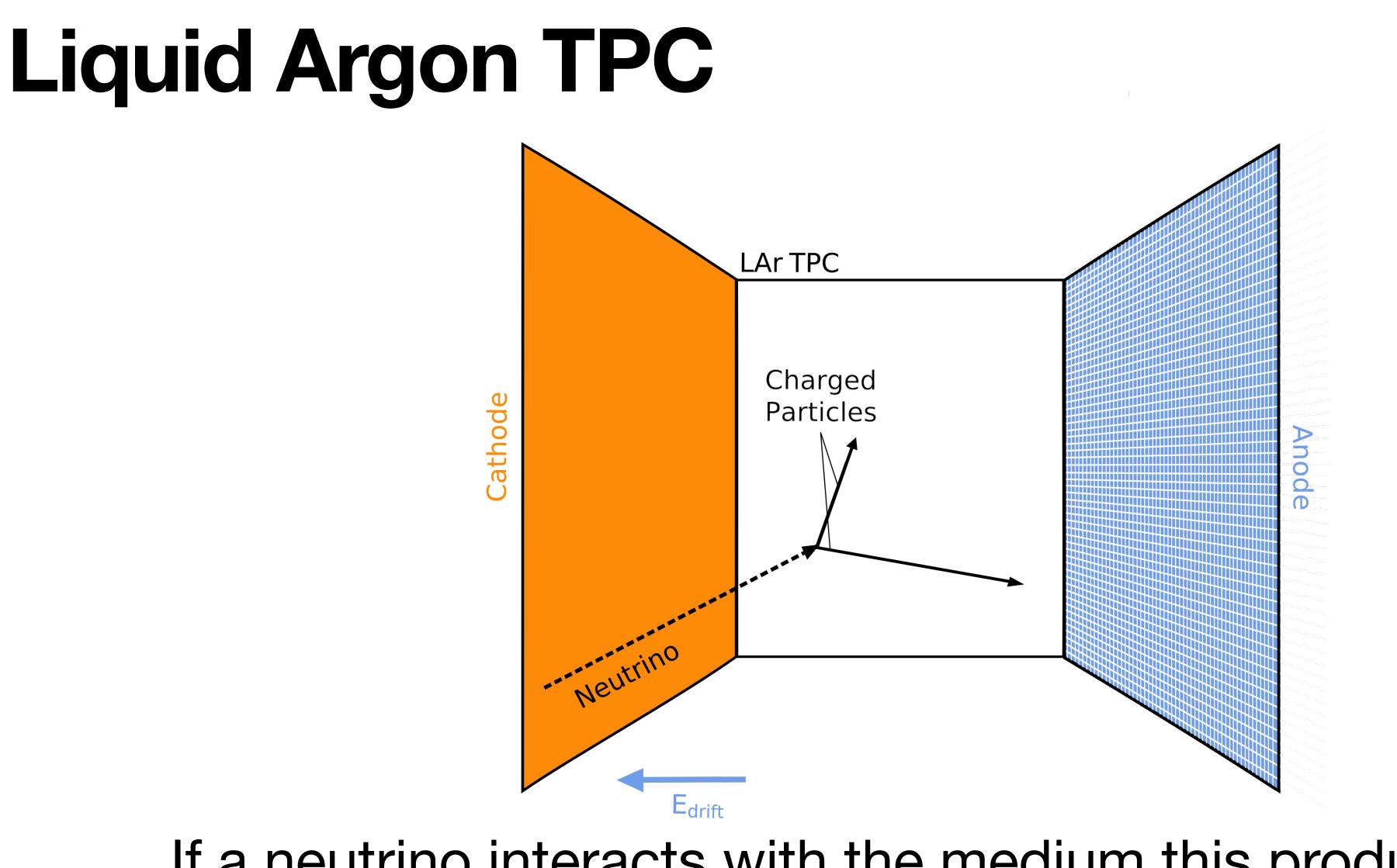


Liquid Argon TPC

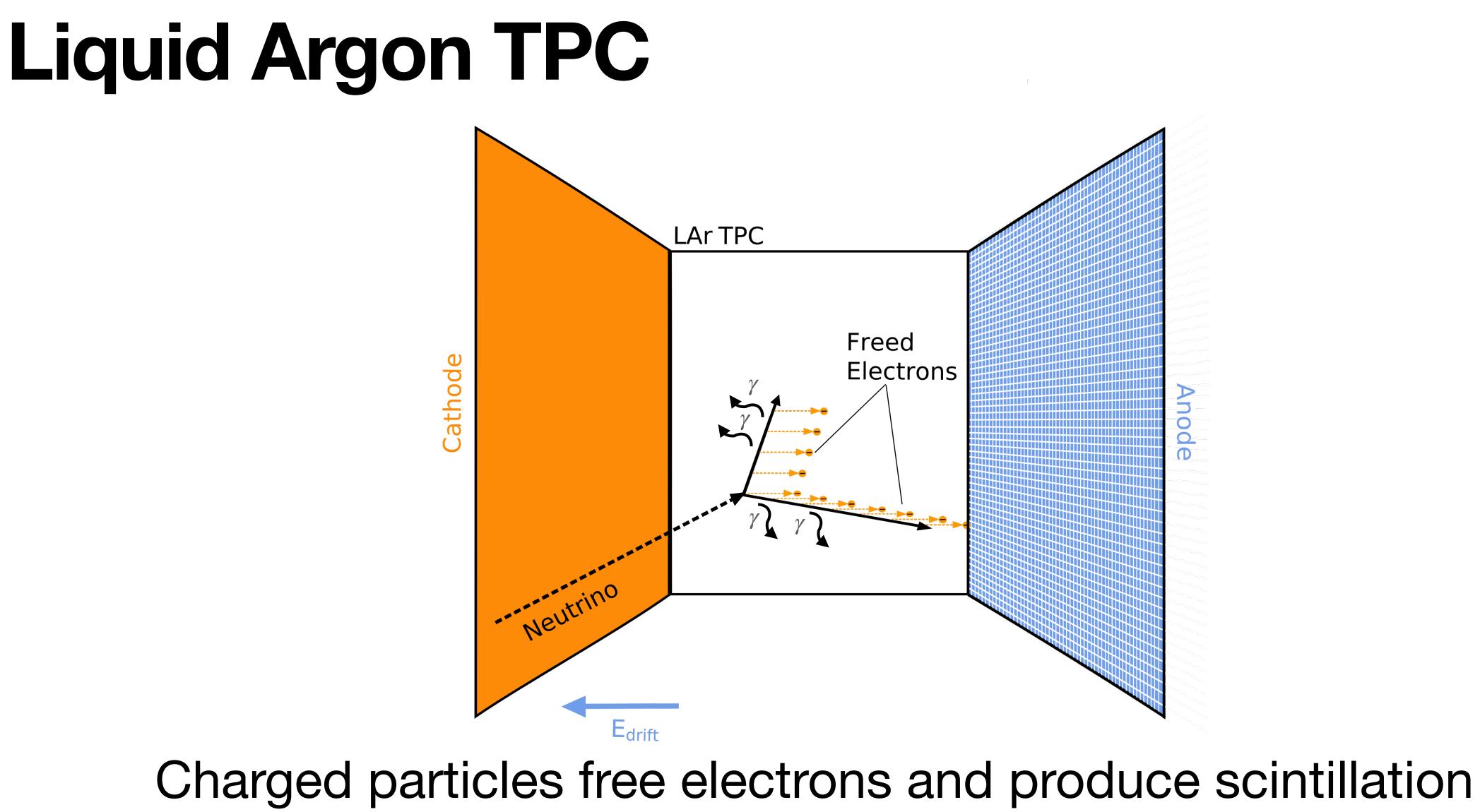
Cathode

A cryostat filled with liquid argon and a strong electric field.

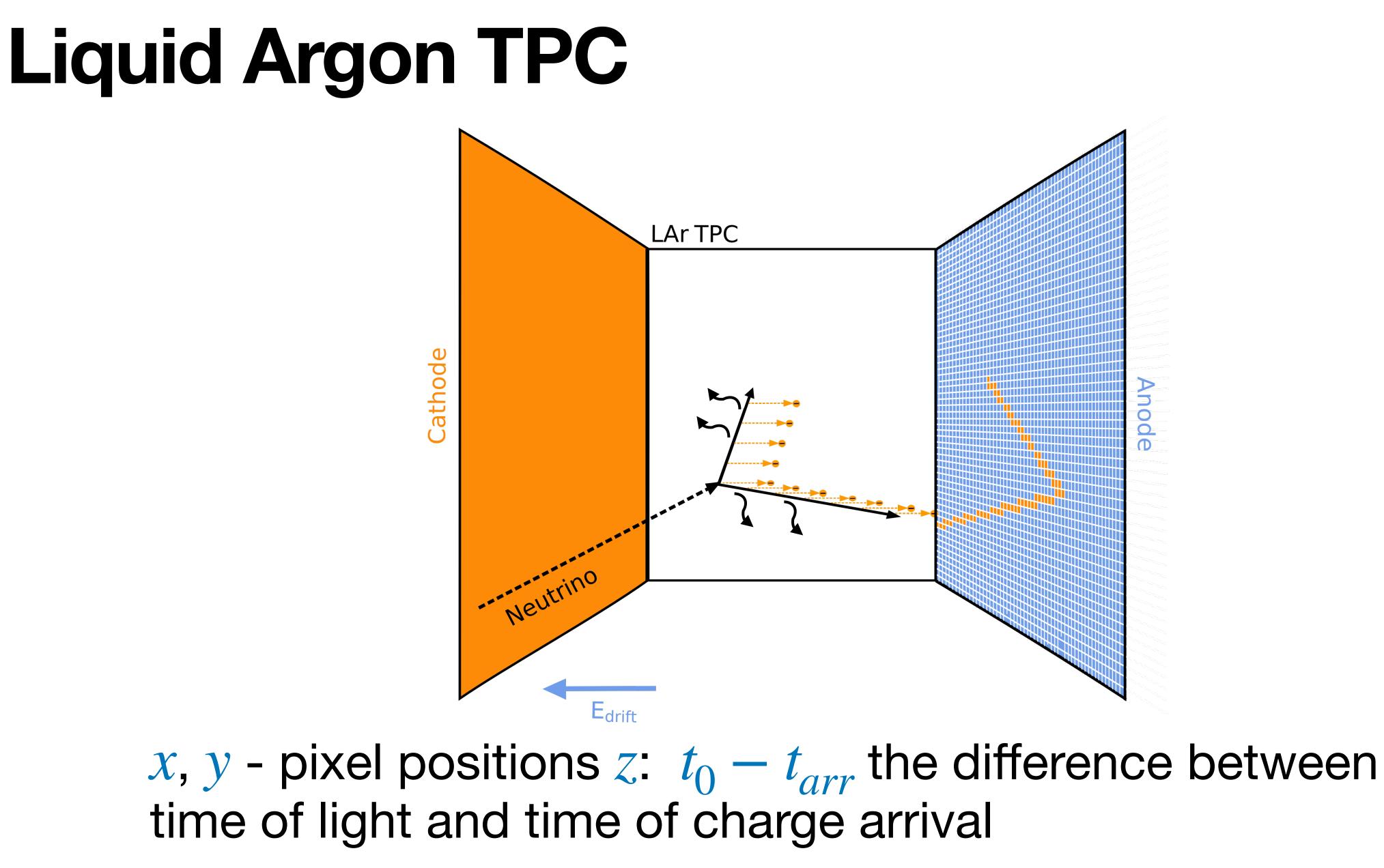




If a neutrino interacts with the medium this produces charged particles.



light. The electrons drift towards the anode.



Dataset

Single particle interactions within a LArTPC of 5 types μ , π , γ , e, p, following PILArNet 2006.01993

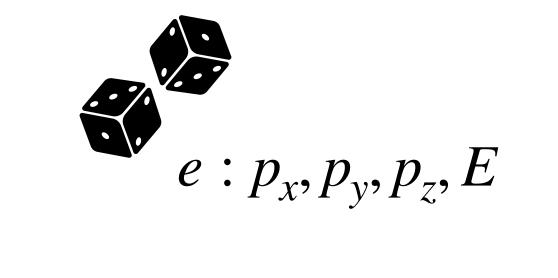
Realistic detector simulation using **larnd-sim**, detector variations of 3 parameters taken from <u>2309.04639</u>

E[0.05, 1.0] GeV wing except protons: E[0.05, 0.4] GeV

Detector Parameter	Range	Units
Electric Field	[0.45, 0.55]	kV/cm
Electron Lifetime	[500, 5000]	μs
Transverse Diffusion	[4e-6, 14e-6]	cm ² /µs

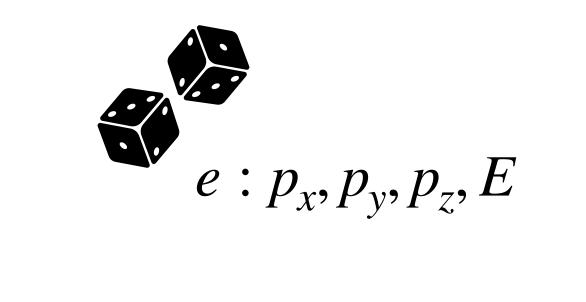
particle generation

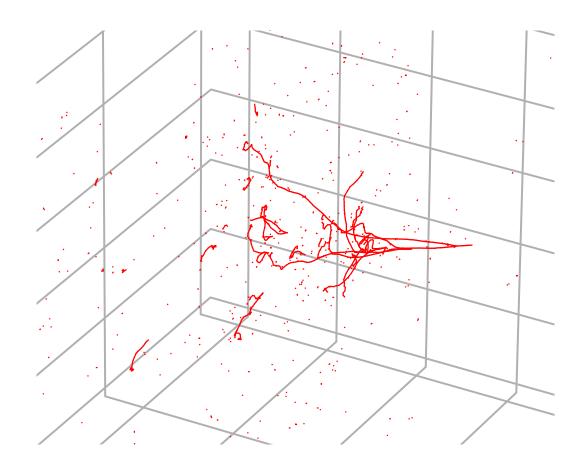
ParticleBomb

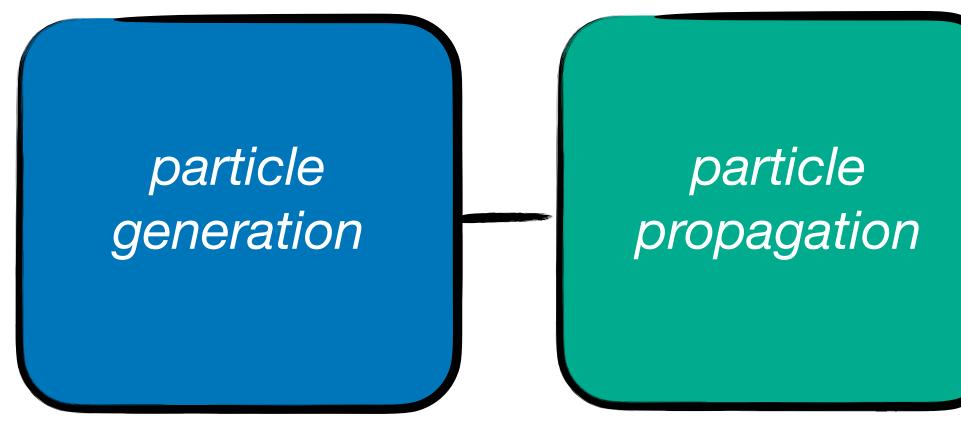


particle generation

ParticleBomb

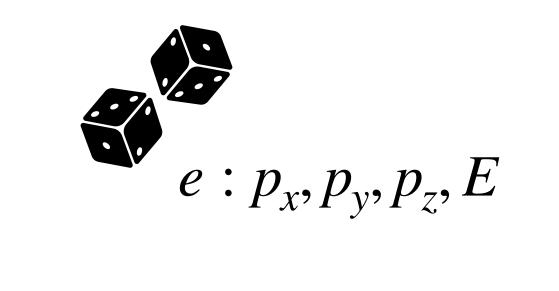


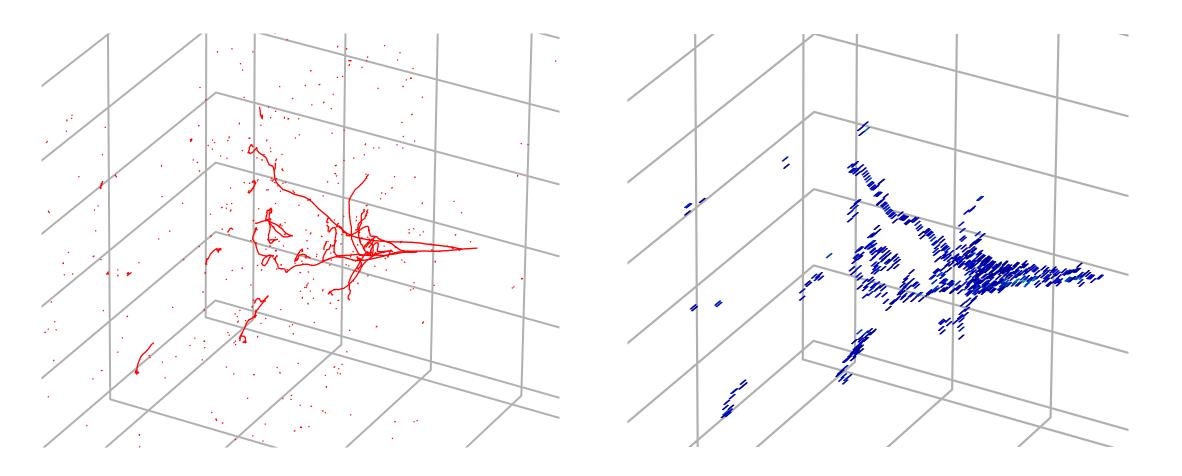


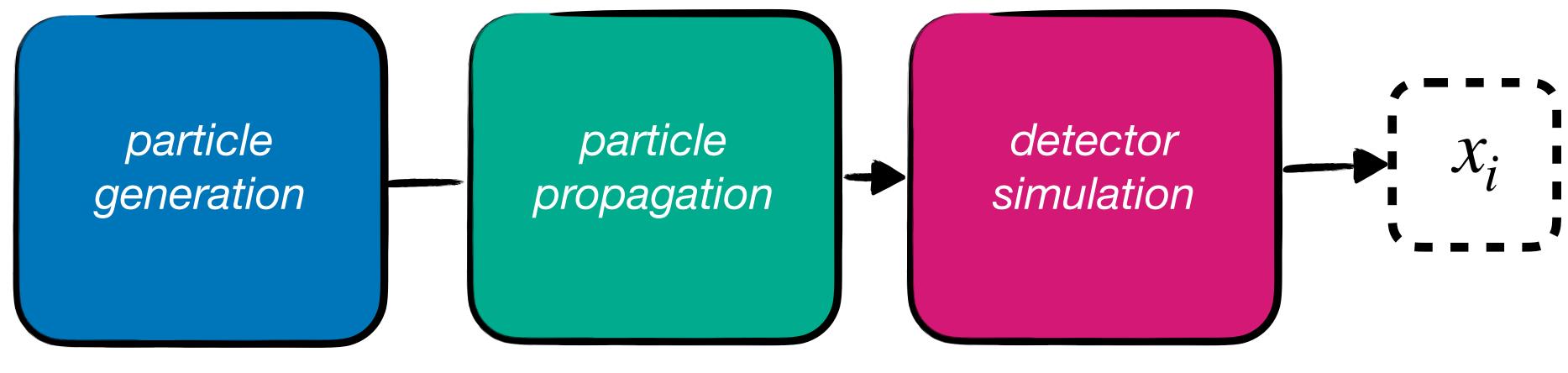


ParticleBomb

edep-sim



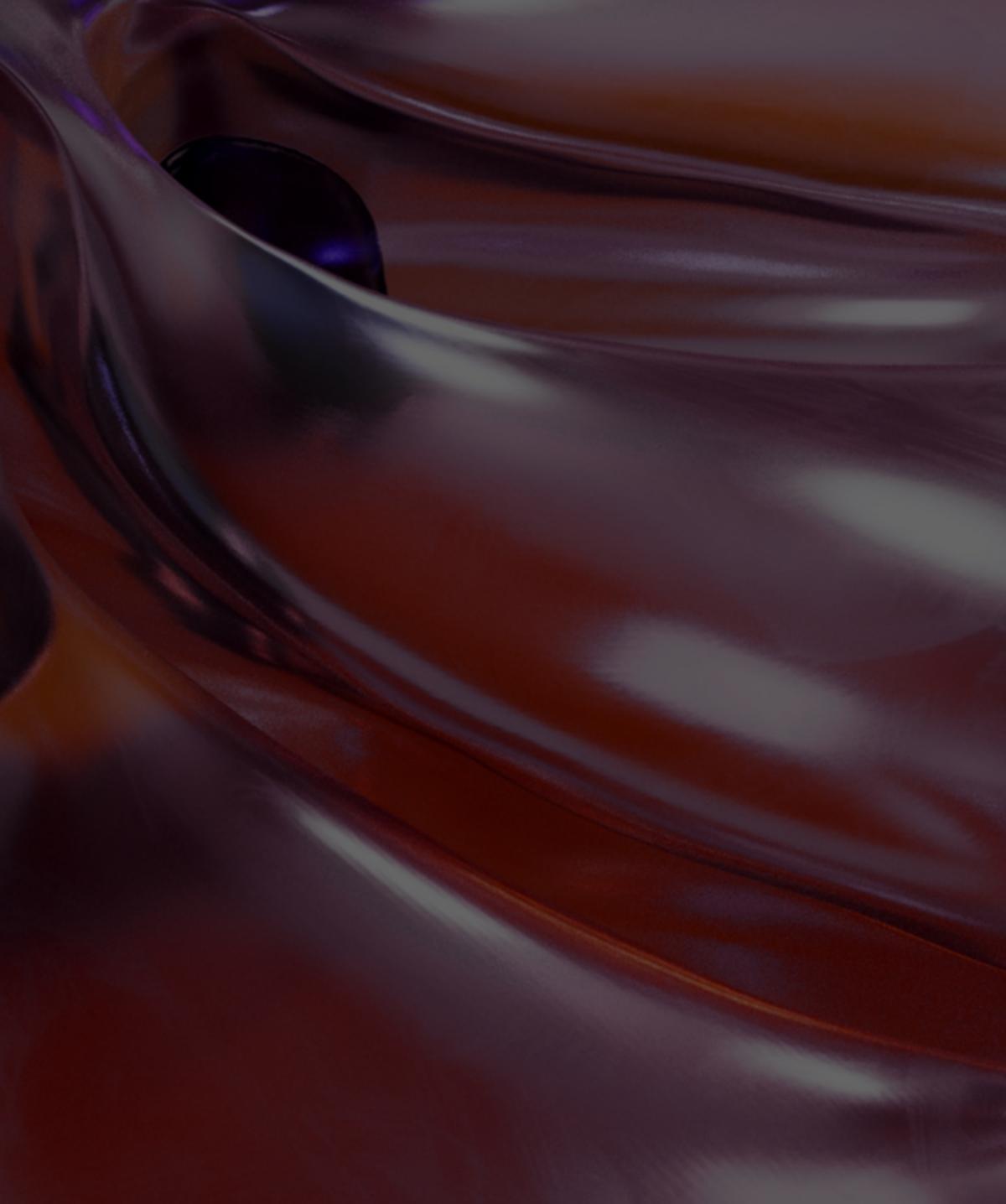




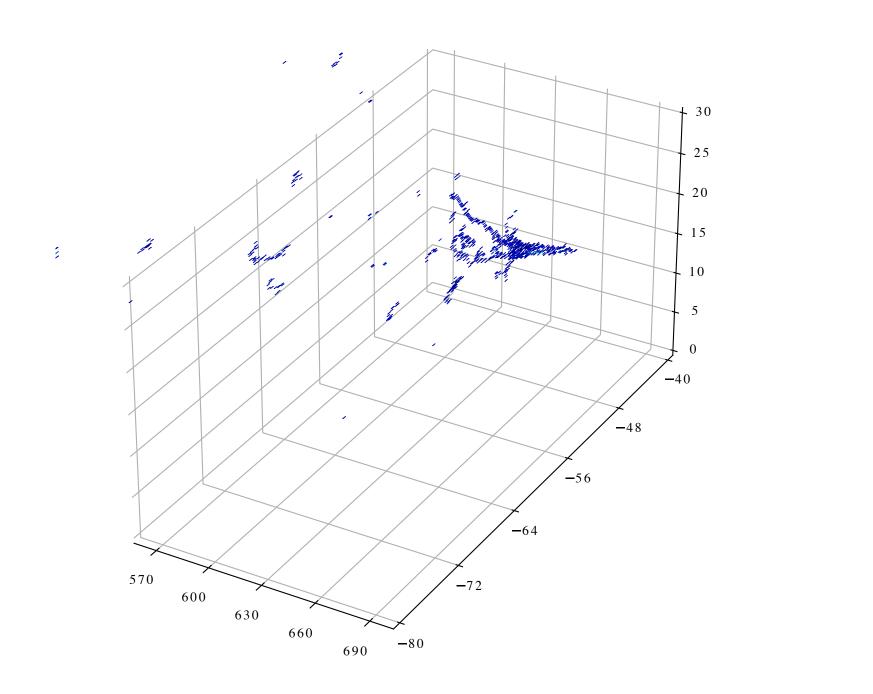
ParticleBomb

edep-sim

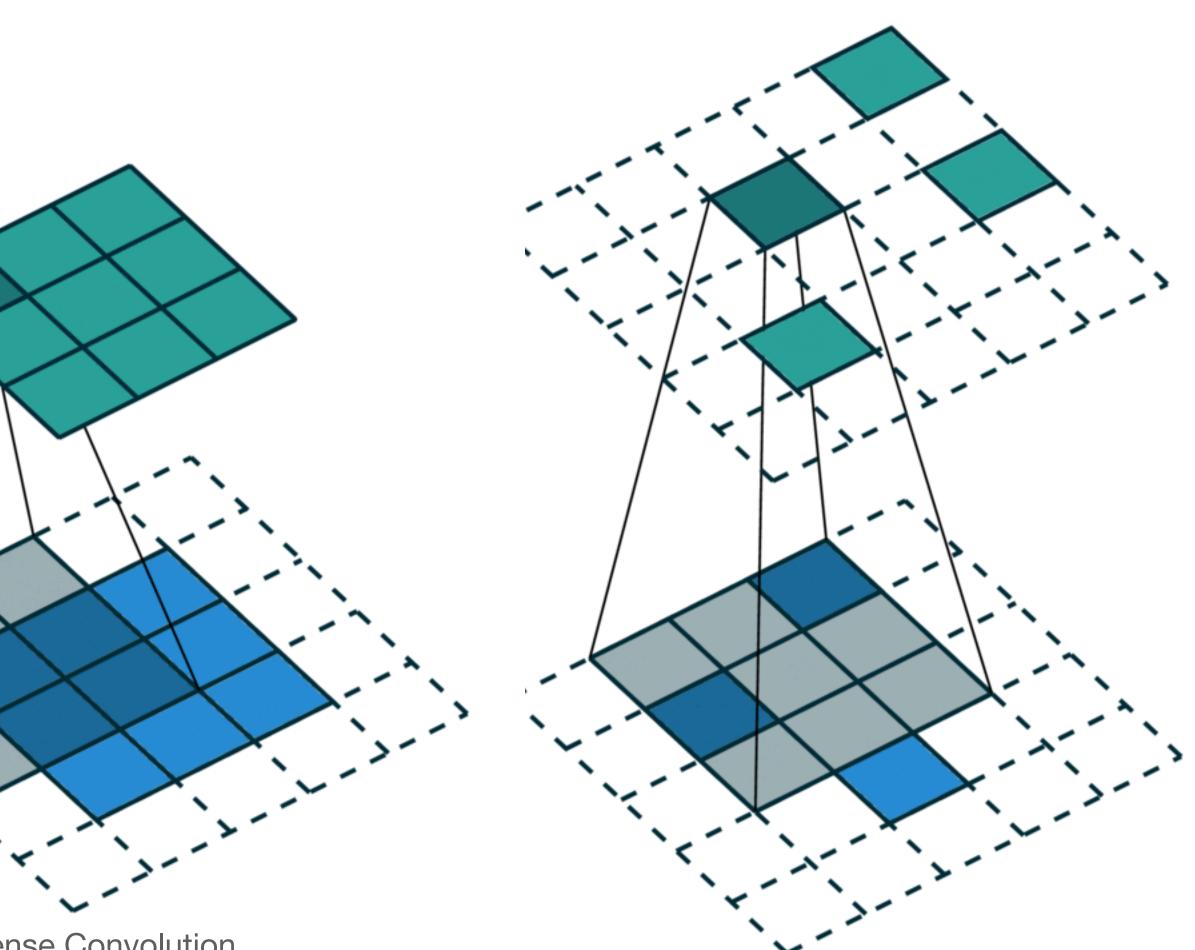
Method



Sparse Convolution



Our input is extremely sparse. To capture most of the event we would have to use a 500³ pixel cube and only 0.01% one of those would be non-empty.

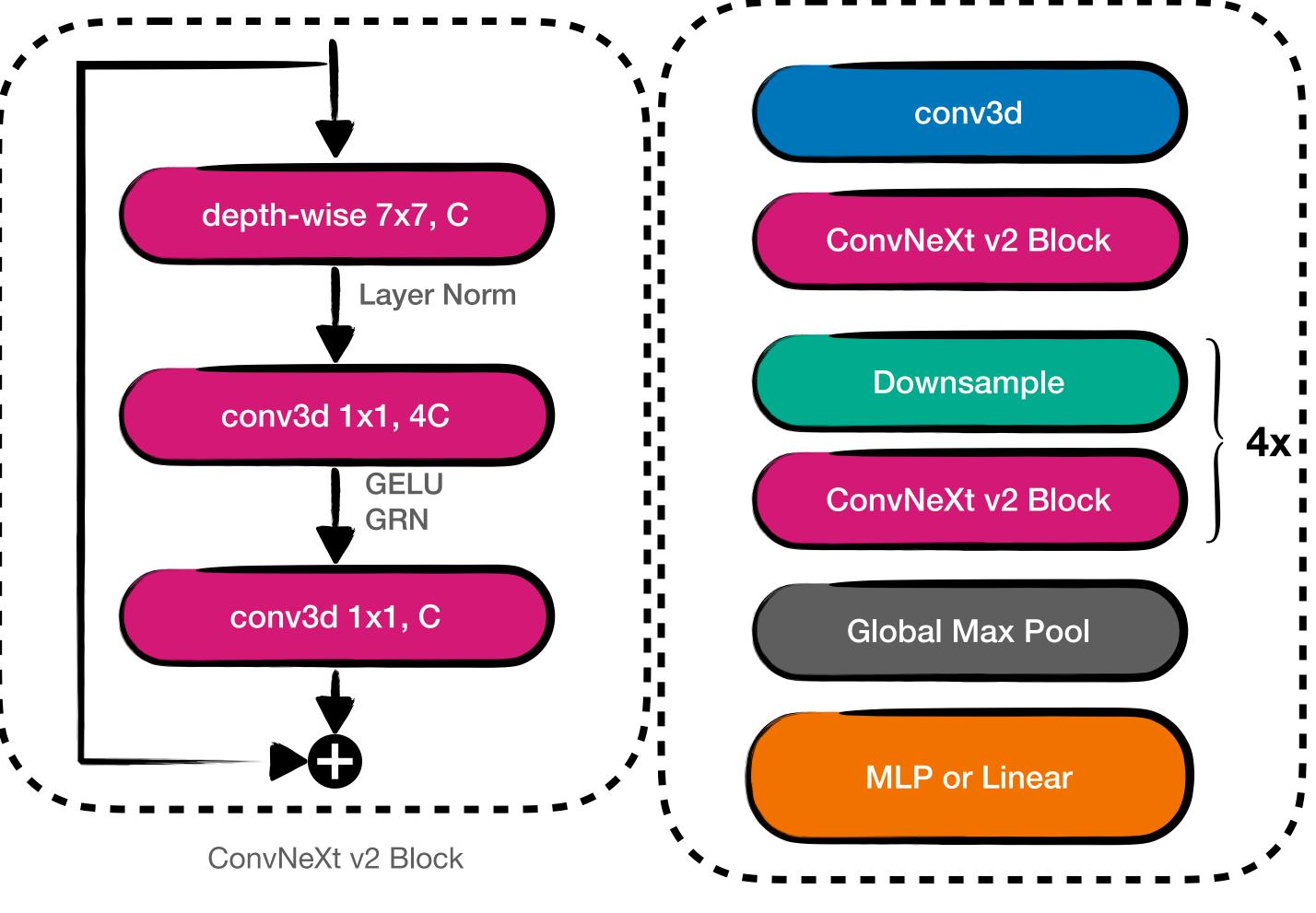


Dense Convolution

Sparse Convolution operates only on non empty-voxels

Check out MinkowskiEngine - a sparse autodiff tensor library

Architecture



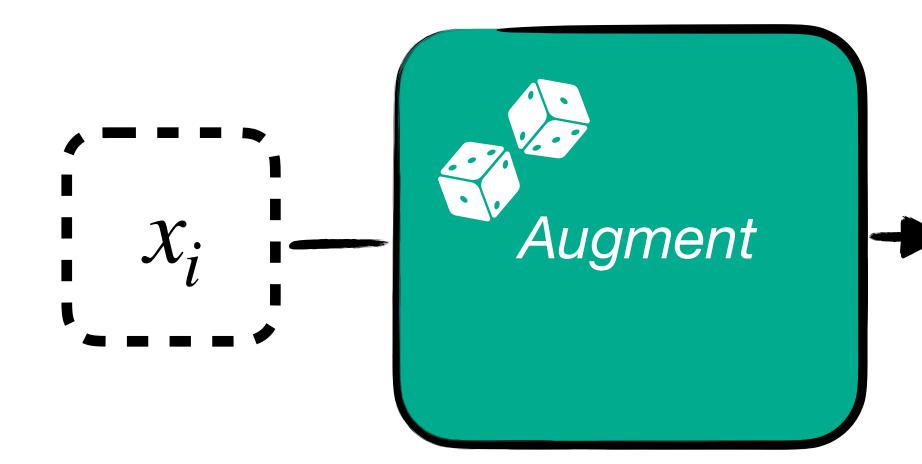
Architecture:

- a sparse submanifold CNN based on ConvNeXt v2

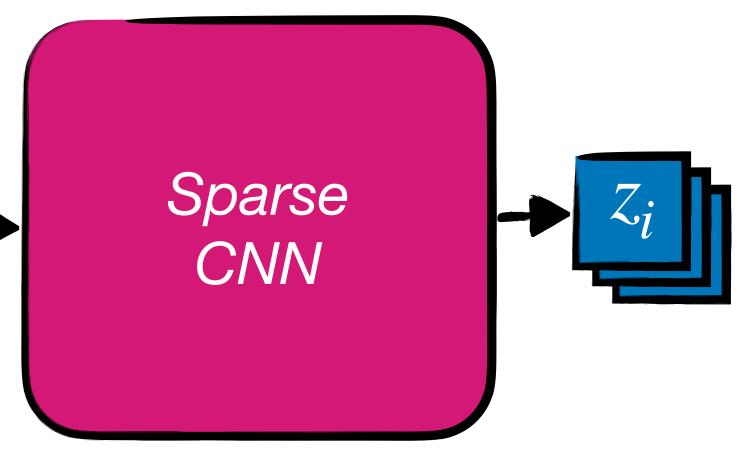
Full architecture

We use an MLP to get the similarity vector for CLR and a Linear layer if we are training a classifier.

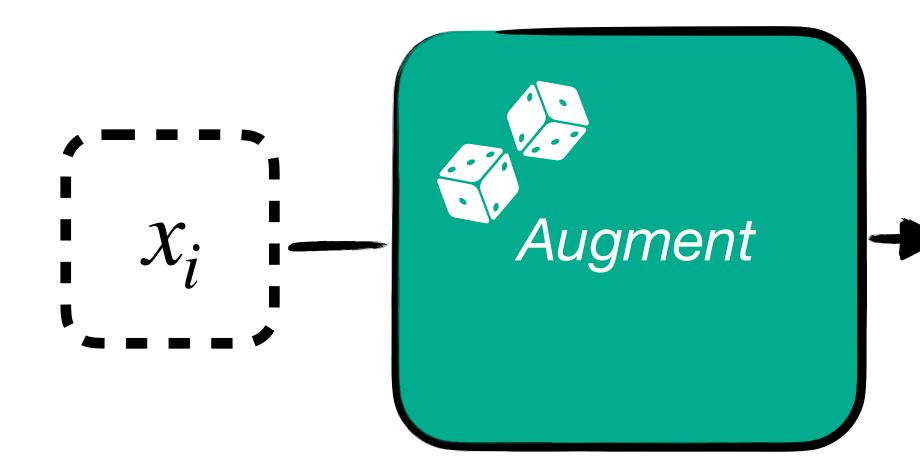
Augmentations



Handcrafted: – random scaling, translation, identity, dropping voxels



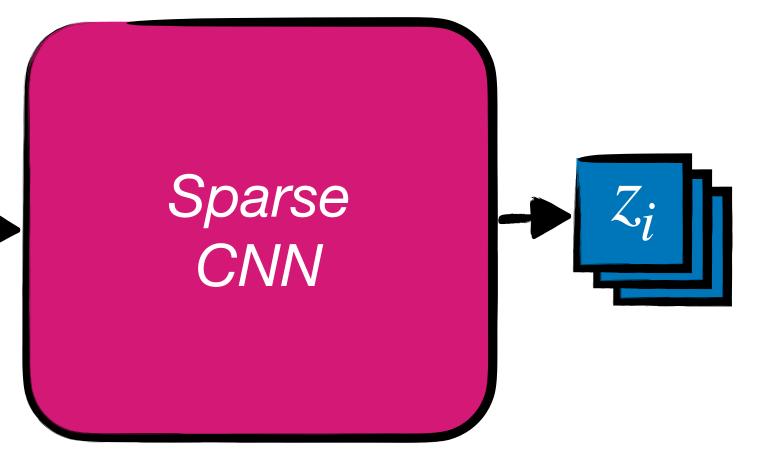
Augmentations



Handcrafted:

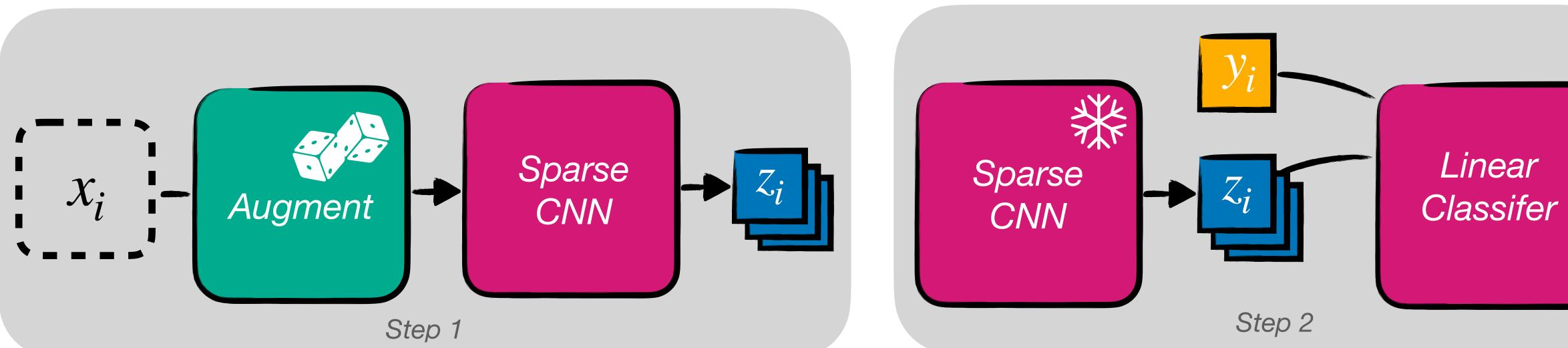
- random scaling, translation, identity, dropping voxels **Detector Variations:**

and electron lifetime



- electric field strength, longitudinal diffusion coefficient

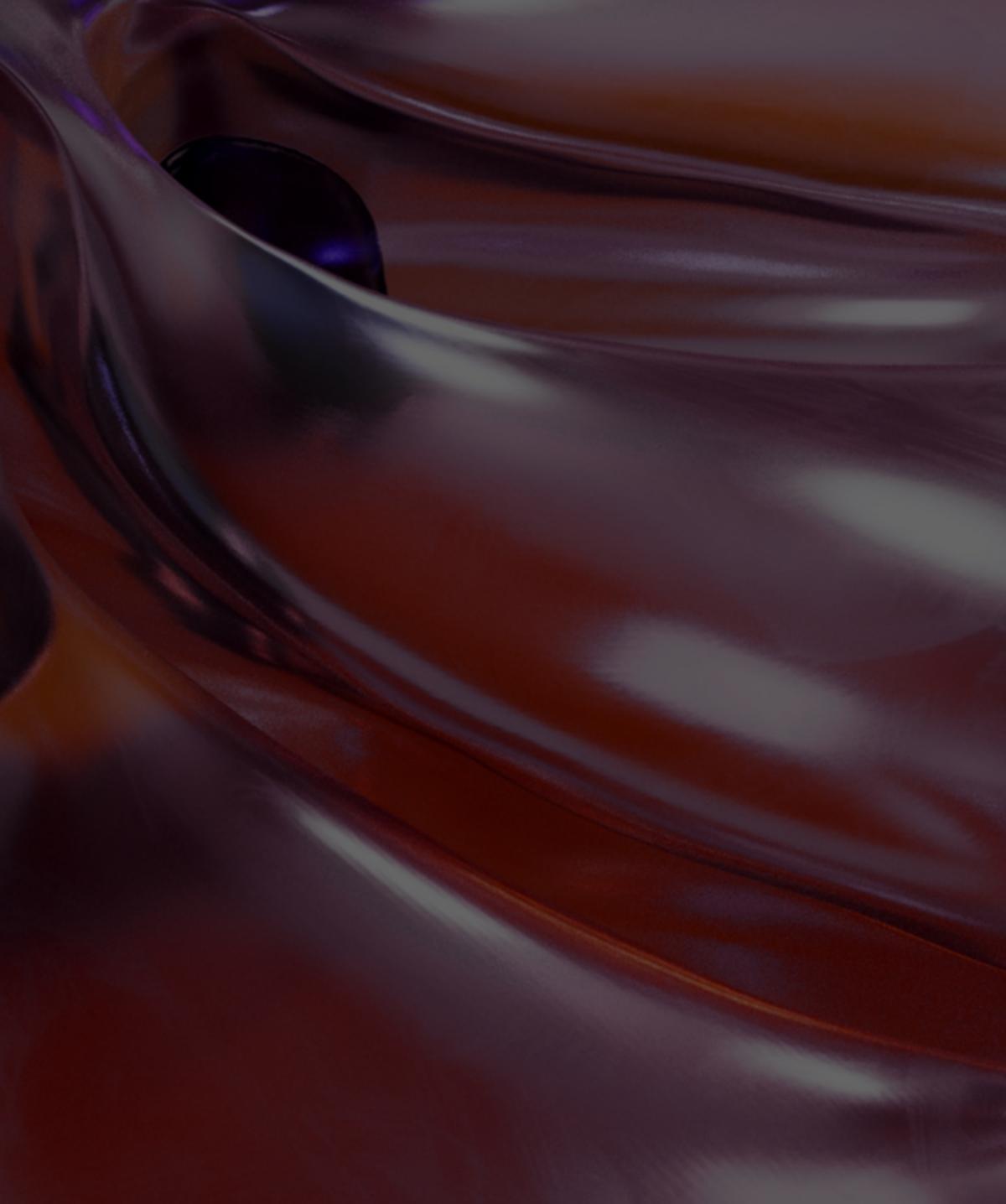
Training and Evaluating SimCLR



We only need to train the base model **once**!

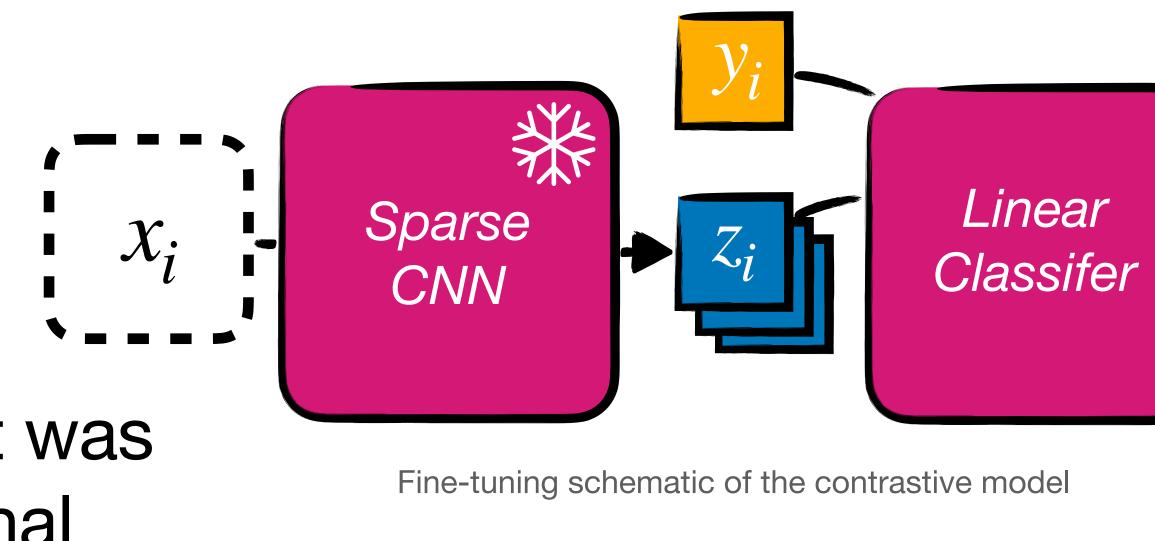
- Can train multiple models cheaply
- All downstream models are decorrelated from the parameters we used for augmentations

Results



Training

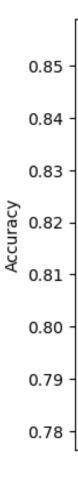
- 3 models:
- contrastive learning model, that was then frozen - fine-tuned on nominal data only
- classifier using nominal data only
- classifier using nominal + throws



Accuracy - Detector Variations

The **contrastive** model outperforms the classifiers trained directly on either nominal or nominal+throws.

It is also less affected by the systematic shifts.



0.86

0.84

0.82

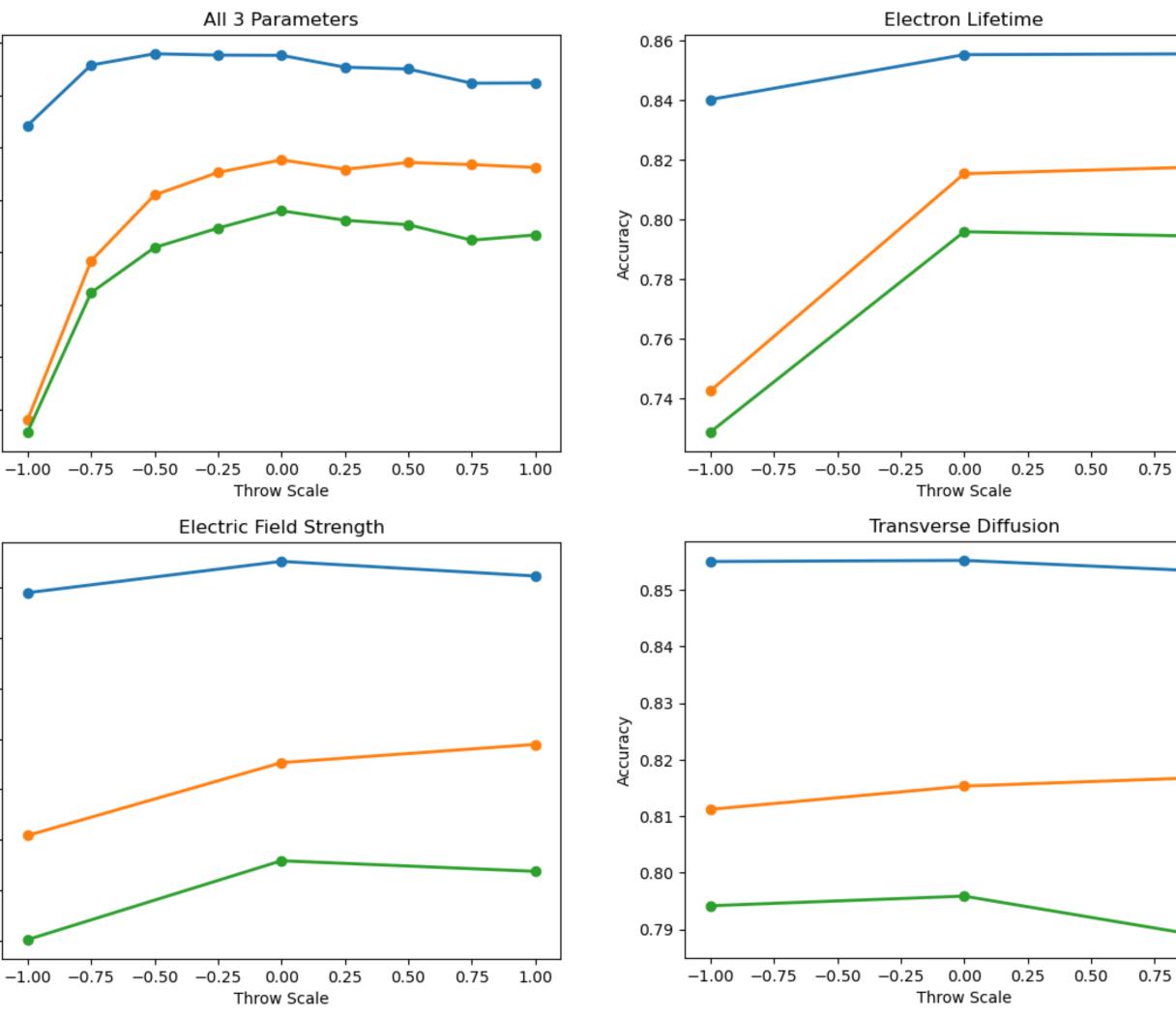
0.80

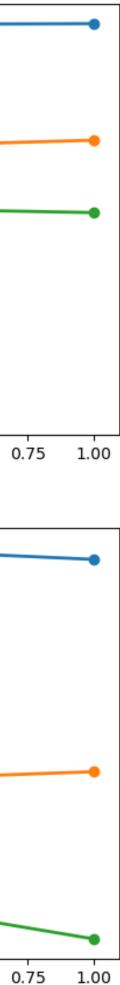
0.76

0.74

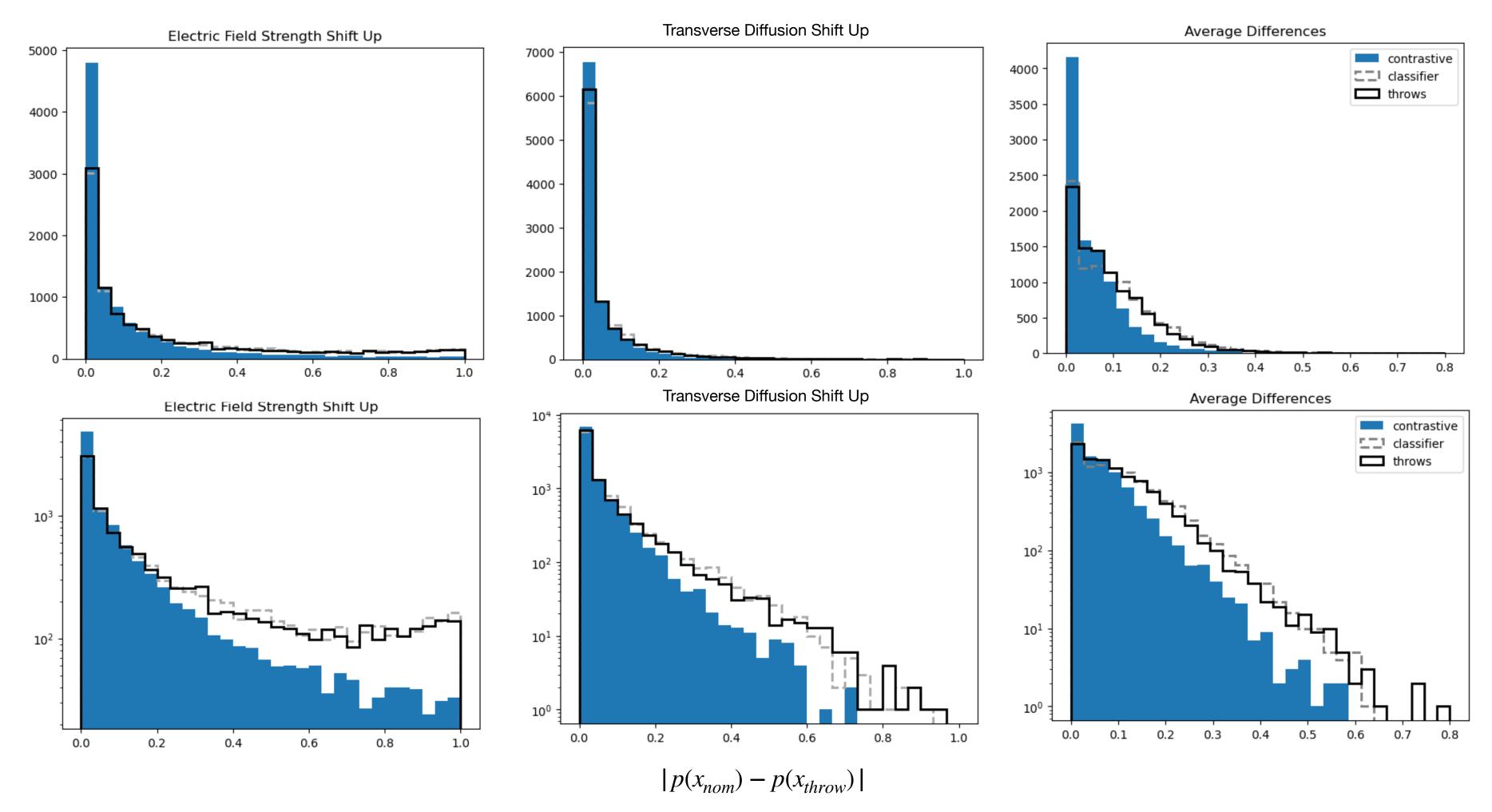
0.72

Accuracy





Score variations



The score of the correct class from the contrastive model is less likely to change when we shift the detector parameters.

Future Work

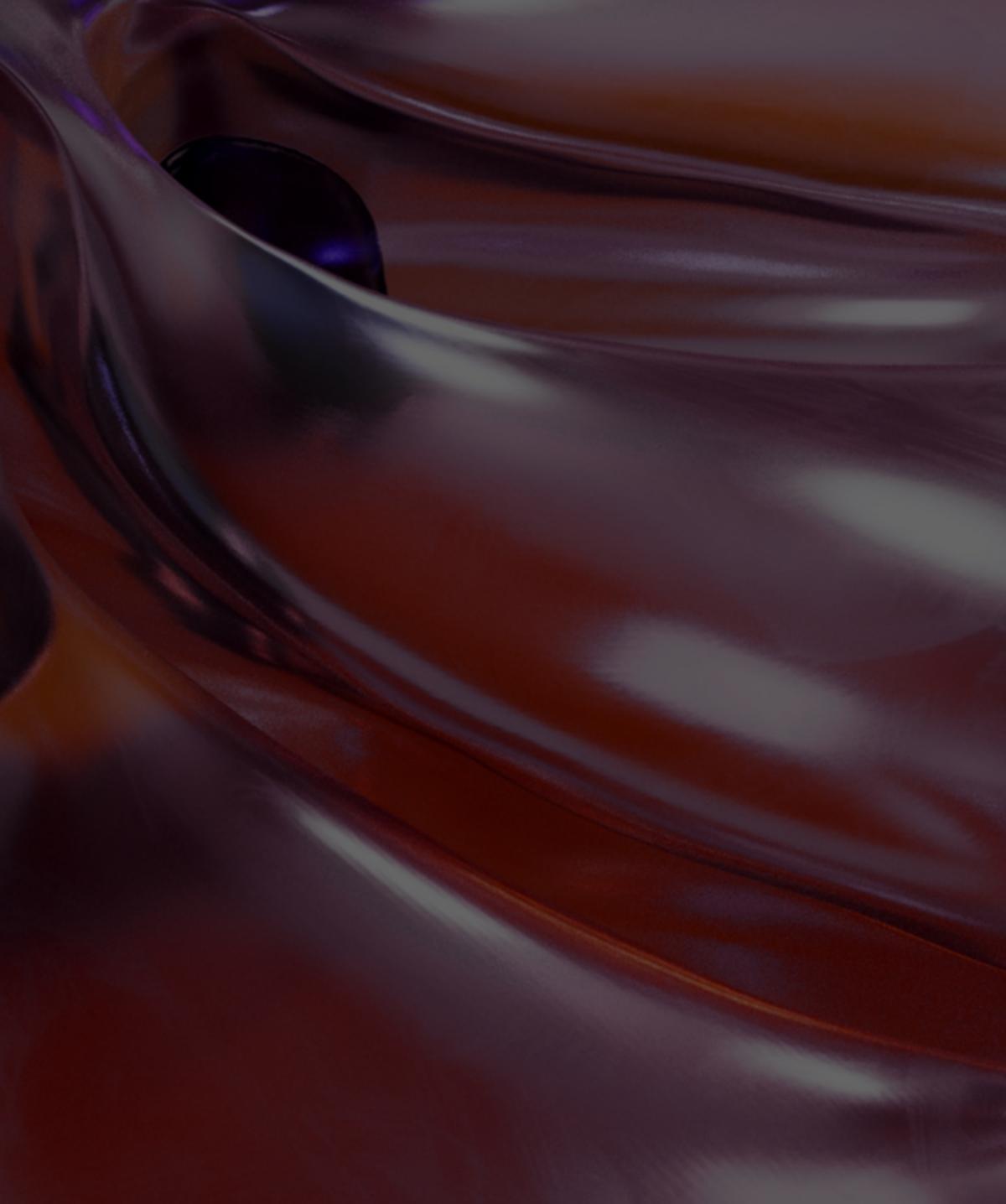
- Fine-tune the model on another task e.g predicting **final state particles**
- Use larger batch sizes for the base model
- Explore other contrastive learning methods
- Compare with other methods of de-biasing (e.g DANN)

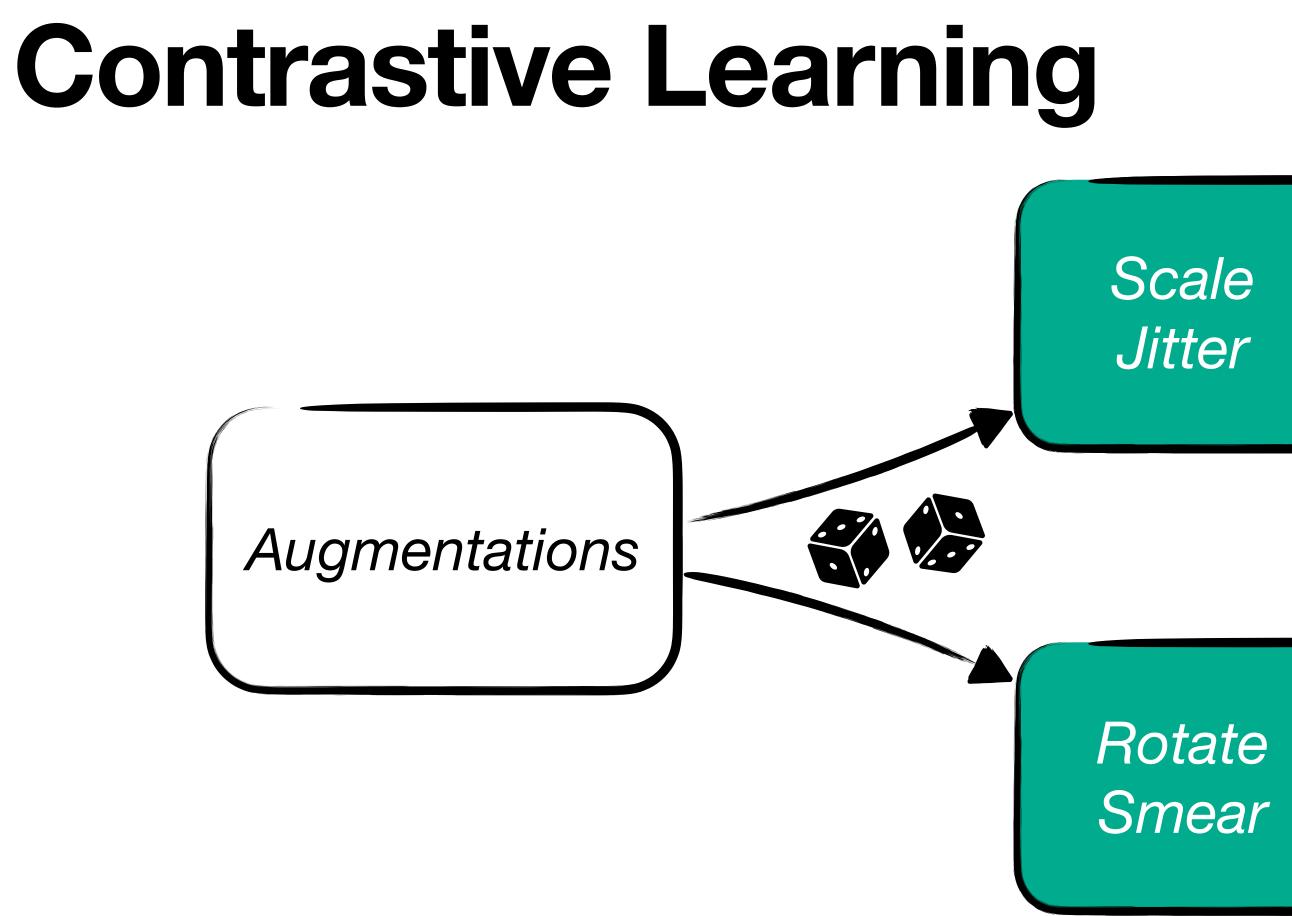
I think this is could be a very exciting way to combine novel ideas from vision enhancing the way ML is used in physics analyses!

Thank you radi.radev@cern.ch

Photo by Google DeepMind on Unsplash

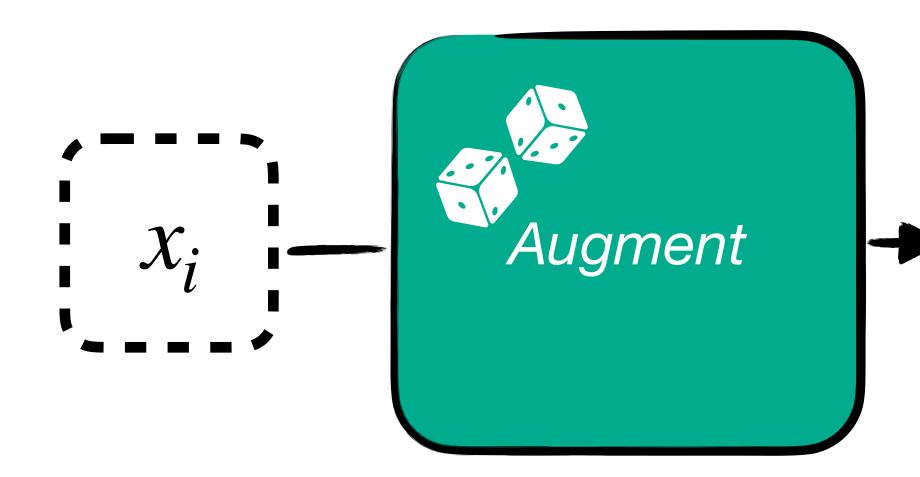
Extra Slides



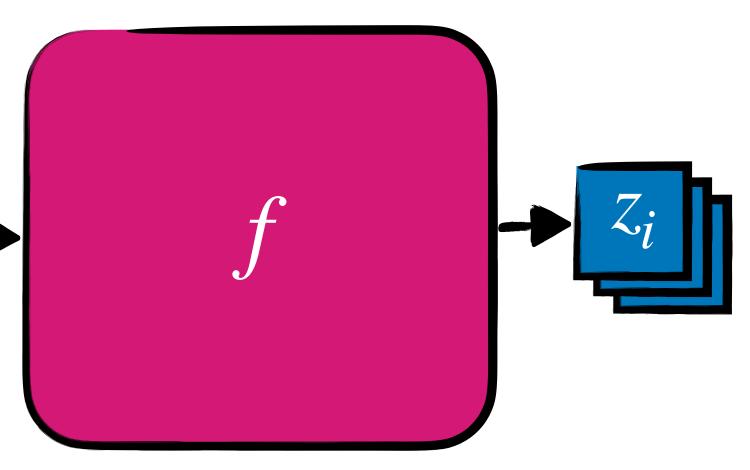


In practice the set of augmentations to be applied to the pairs is picked randomly for each training iteration.

Contrastive Learning

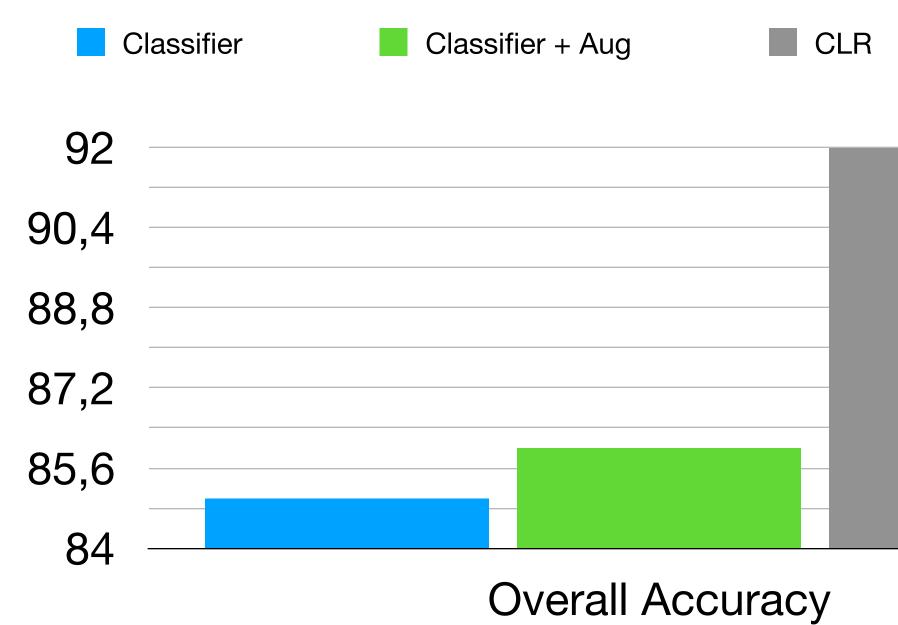


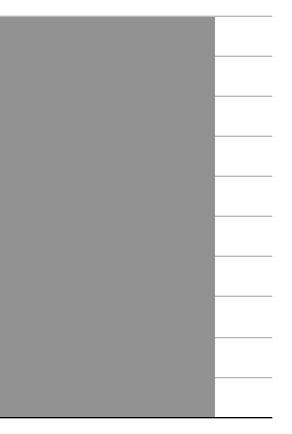
No labels needed - can pre-train on real data!



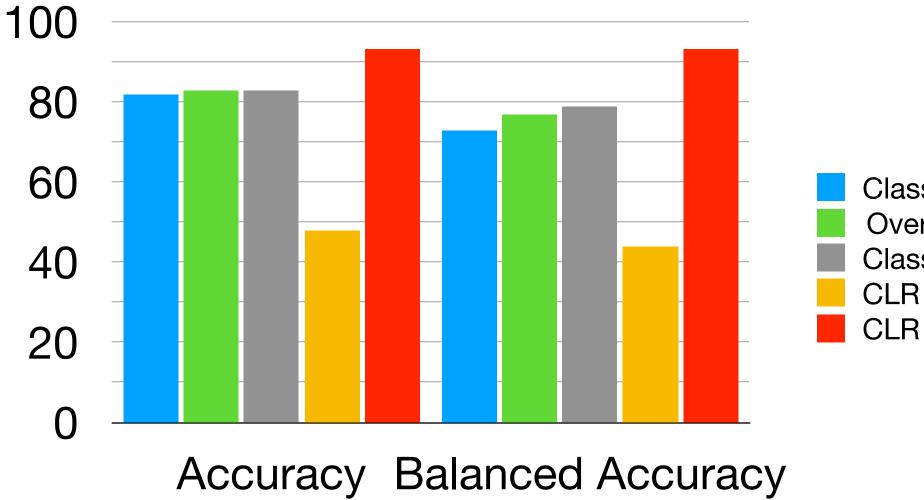
Results on PILArNet

CLR Results





CLR v Linear Classifer Baselines



All models are **frozen** - logistic regression fit on top.

For the classifiers the **last layer** is removed and we fit on the features after maxpooling.

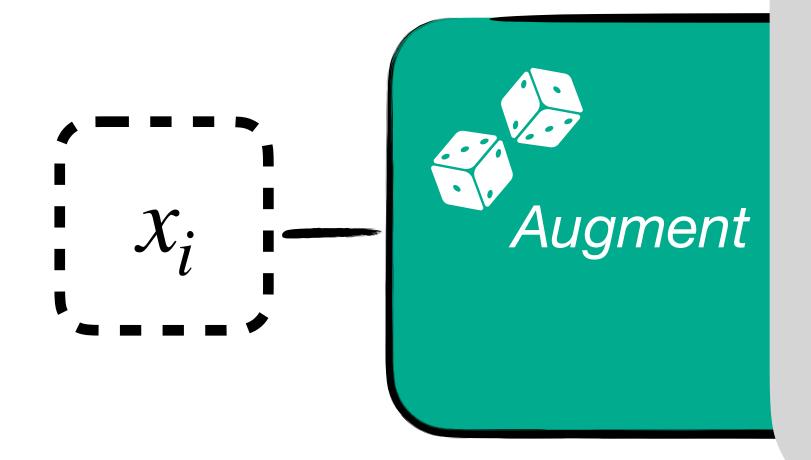
For CLR we remove the **MLP** and again use the features after maxpooling.

yi Sparse CNN Vi Linear Classifer

Classifier Overfit Classifier Classifier + Augmentations CLR Randomly Initalized CLR

Linear Classifier Test

Method

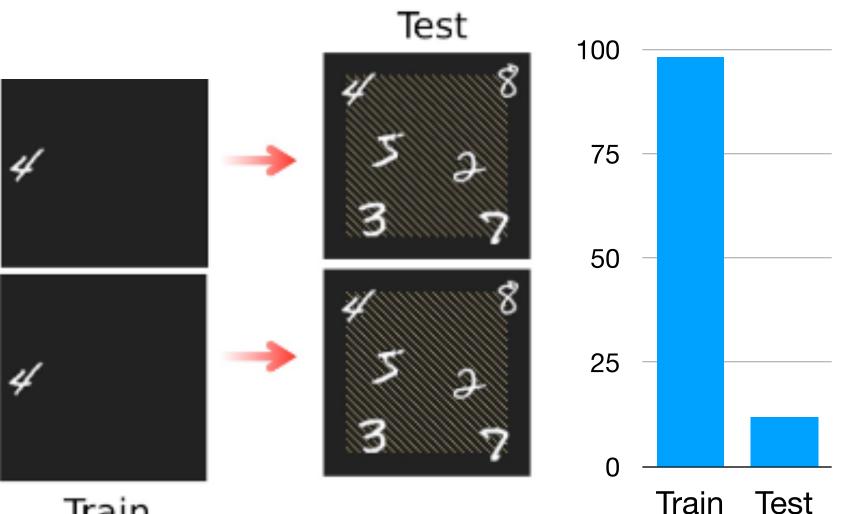


Augmentations: - random scaling, translation rotation, dropping voxels Architecture:

- a sparse sub manifold CNN based on ConvNeXt v2

But wait aren't CNNs already invariant to translations?

Aside - CNN Translation Invariance



Train

Adapted From "CNNs Are Not Invariant to Translation, but They Can Learn to Be"

Turns out not quite!

Although architectures can be constructed to be invariant to translations, most modern CNNs are not by default

But wait aren't CNNs already invariant to translations?

Convolutions are **equivariant** to translation, but this does not directly translate to invariance.