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• You have a lot of data but not many labelled 
examples


• Train some model that utilises the unlabelled 
data


• Then you can fine-tune the base model 
using the small labeled sample
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Self-Supervised Learning in Vision and HEP
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• You have a lot of data but not many labelled 
examples


• Train some model that utilises the unlabelled 
data


• Then you can fine-tune the base model 
using the small labeled sample


• But HEP simulation comes with detailed 
information?


• It can help mitigate biases we have in our 
simulation Illustration of MAE - vision foundation model



We explore a method where we use a combination 
of detector systematics and handcrafted 
augmentations to learn a robust representation.


Our method is based roughly on SimCLR - Simple 
Framework for Contrastive learning of Visual 
Representations - 2002.05709

Mitigating Biases by Pretraining
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https://arxiv.org/abs/2002.05709


Contrastive Learning of 
Representations
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Pass an event  through a neural network  to 
extract a vector representation . 


 is a high-dimensional vector (in our case 768d)
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Pass an augmented event  through a neural network 
 to extract a different vector representation . 

xi
f zi

Representations
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Pass pairs of augmented events through a neural 
network  to extract vector representations. 
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Pass pairs of augmented events through a neural 
network  to extract vector representations. 

 

Representations from different events - low similarity 

f

sim(zi, zj) ≈ 0
Network Objective
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Pass pairs of augmented events through a neural 
network  to extract vector representations. 


Representations from same event - high similarity 
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sim(zi, ̂zi) ≈ 1
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fAugment

Flexibility: 
Use any augmentation - What invariance do we 
encode?


Use any neural network - What is the most natural 
data structure of the event?

Contrastive Learning
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Physical Inductive Bias



Data



Liquid Argon TPC
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A cryostat filled with liquid argon and a strong electric 
field.



Liquid Argon TPC
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If a neutrino interacts with the medium this produces 
charged particles. 



Liquid Argon TPC
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γ
γ

γ γ

Charged particles free electrons and produce scintillation 
light. The electrons drift towards the anode.



Liquid Argon TPC
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,  - pixel positions :   the difference between 
time of light and time of charge arrival
x y z t0 − tarr



Dataset
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Single particle interactions within a 
LArTPC of 5 types , following 
PILArNet 2006.01993 

μ, π, γ, e, p
E [0.05, 1.0] GeV

except protons:

E [0.05, 0.4] GeV

Realistic detector simulation using 
larnd-sim, detector variations of 3 
parameters taken from 2309.04639

Detector 
Parameter Range Units

Electric Field [0.45, 0.55]

Electron Lifetime [500, 5000]

Transverse 
Diffusion [4e-6, 14e-6]

μs

cm2/μs

kV/cm

https://arxiv.org/abs/2006.01993
https://arxiv.org/pdf/2309.04639.pdf


Simulation Overview
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particle 
generation

ParticleBomb



Simulation Overview
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particle 
generation

ParticleBomb

e : px, py, pz, E



Simulation Overview
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Simulation Overview
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Method
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Our input is extremely sparse. To capture 
most of the event we would have to use a 

 pixel cube and only 0.01% one of those 
would be non-empty. 
5003
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Sparse Convolution

Sparse Convolution operates only on non empty-voxels

Dense Convolution 

Check out MinkowskiEngine - a 
sparse autodiff tensor library

https://github.com/NVIDIA/MinkowskiEngine


Architecture: 
- a sparse submanifold CNN based on 

ConvNeXt v2

Architecture
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depth-wise 7x7, C

conv3d 1x1, 4C

conv3d 1x1, C

Layer Norm

GELU

GRN 

ConvNeXt v2 Block

ConvNeXt v2 Block

Downsample

ConvNeXt v2 Block
4x

conv3d 

Global Max Pool 

MLP or Linear

We use an MLP to get the similarity 
vector for CLR and a Linear layer if 
we are training a classifier.

Full architecture



Augment

Handcrafted: 
- random scaling, translation, identity, dropping voxels


Augmentations
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xi
ziSparse  

CNN



Augment

Handcrafted: 
- random scaling, translation, identity, dropping voxels


Detector Variations: 
- electric field strength, longitudinal diffusion coefficient 

and electron lifetime

Augmentations
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Training and Evaluating SimCLR
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Augmentxi
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Step 1 

Sparse  
CNN

We only need to train the 
base model once! 

zi

yi

Linear  
Classifer

Step 2 

Sparse  
CNN

• Can train multiple models cheaply

• All downstream models are         
decorrelated from the parameters 
we used for augmentations



Results



3 models:

- contrastive learning model, that was 
then frozen - fine-tuned on nominal 
data only

- classifier using nominal data only

- classifier using nominal + throws

30

Training
zi

yi

Linear  
Classifer

Sparse  
CNN

xi

Fine-tuning schematic of the contrastive model



Accuracy - Detector Variations
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The contrastive model 
outperforms the classifiers 
trained directly on either 
nominal or nominal+throws. 

It is also less affected by the 
systematic shifts. 



Score variations
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The score of the correct class from the contrastive model is 
less likely to change when we shift the detector parameters.

|p(xnom) − p(xthrow) |

Transverse Diffusion Shift Up

Transverse Diffusion Shift Up



Future Work
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• Fine-tune the model on another task e.g 
predicting final state particles


• Use larger batch sizes for the base model

• Explore other contrastive learning methods

• Compare with other methods of de-biasing (e.g 

DANN) 

I think this is could be a very exciting way to combine novel ideas 
from vision enhancing the way ML is used in physics analyses!



Thank you

Photo by Google DeepMind on Unsplash

  

radi.radev@cern.ch

mailto:radi.radev@cern.ch


Extra Slides
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Rotate 
Smear

In practice the set of augmentations to be applied to 
the pairs is picked randomly for each training iteration.

Scale 
Jitter

Rotate 
Smear

Augmentations 



fAugment

No labels needed - can pre-train on real data! 

Contrastive Learning
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Results on PILArNet
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CLR v Linear Classifer Baselines
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CLR

All models are frozen - logistic regression fit on top.

For the classifiers the last layer is removed and we fit on the features 
after maxpooling. 

For CLR we remove the MLP and again use the features after 
maxpooling.


Linear Classifier Test



Augment

Augmentations: 
- random scaling, translation, rotation, dropping voxels


Architecture: 
- a sparse sub manifold CNN based on ConvNeXt v2

Method
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xi
ziSparse  

CNN

But wait aren’t CNNs already 
invariant to translations?
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But wait aren’t CNNs already 
invariant to translations?

Aside - CNN Translation Invariance

Turns out not quite!
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Adapted From “CNNs Are Not Invariant to 
Translation, but They Can Learn to Be”

Convolutions are equivariant to translation, 
but this does not directly translate to 
invariance.


Although architectures can be constructed to 
be invariant to translations, most modern 
CNNs are not by default



