

ML Unfolding based on conditional Invertible Neural Networks using Iterative Training

Mathias Backes (KIP Heidelberg)

with Anja Butter (LPNHE, ITP), Monica Dunford (KIP) and Bogdan Malaescu (LPNHE).

Based on [2212.08674] and [2310.17037]

Basic Concept

Conditional Invertible Neural Networks (cINN)

$$u_1 = (v_1 - t_1(u_2, c)) \oslash \exp(s_1(u_2, c))$$
$$u_2 = (v_2 - t_2(v_1, c)) \oslash \exp(s_2(v_1, c))$$

 $v_1 = u_1 \odot \exp(s_1(u_2, c)) + t_1(u_2, c)$ $v_2 = u_2 \odot \exp(s_2(v_2, c)) + t_2(v_1, c)$

Source: arXiv [1907.02392]

cINN Unfolding - Training

- Train on Monte Carlo simulation
- Propagate (truth, reco) event pairs through the network
- Loss forces latent space to be gaussian
- Result: conditional bijective mapping between gaussian latent space and truth-level information

Source: arXiv [2006.06685]

cINN Unfolding - Evaluation

- Unfold measured data on an event-by-event basis
- Sample in gaussian latent space
- Probabilistic single-event unfolding

Source: arXiv [2006.06685]

cINN Unfolding - Evaluation

Differences between Data and MC induce biases in the unfolding result \Rightarrow Iterative approach needed

Differences between Data and MC induce biases in the unfolding result \Rightarrow Iterative approach needed

Differences between Data and MC induce biases in the unfolding result \Rightarrow Iterative approach needed

Differences between Data and MC induce biases in the unfolding result \Rightarrow Iterative approach needed

Iterative cINN Unfolding

Iterative Approach

Features:

- Structures present in the data are encoded implicitly in the MC Truth
- General similarities to matrix based iterative bayesian-like unfolding
- Maintain event-wise probabilistic distributions

Publication: [2212.08674]

Results for the Iterative Approach

Results for the Iterative Approach

- Construct an analytically solvable toy model
- Use Bayes theorem to construct pseudo-inverse:

$$p(t|r) = \frac{p(r|t) \cdot p(t)}{\int p(r|t) \cdot p(t) \,\mathrm{d}t},$$

• Apply pseudo-inverse to measured distribution:

$$p_u(t) = \int p(t|r) p_M(r) \mathrm{d}r$$

Statistical Uncertainties and Correlations

Sources of statistical uncertainties:

- Training of the network initialized randomly
- Fluctuations in the data
- Fluctuations in the Monte Carlo simulation

Calculation of covariance matrices with fluctuated pseudo-experiments (bootstrap method):

$$\operatorname{cov}_{ij} = \frac{1}{N_f} \sum_{1}^{N_f} \left(t_i^{\text{Unf}} - \overline{t_i^{\text{Unf}}} \right) \left(t_j^{\text{Unf}} - \overline{t_j^{\text{Unf}}} \right)$$
$$\sigma_i = \sqrt{\operatorname{cov}_{ii}}$$

Relative uncertainties without reweighting

Statistical Uncertainties and Correlations

Sources of statistical uncertainties:

- Training of the network initialized randomly
- Fluctuations in the data
- Fluctuations in the Monte Carlo simulation

Calculation of covariance matrices with fluctuated pseudo-experiments (bootstrap method):

$$\operatorname{cov}_{ij} = \frac{1}{N_f} \sum_{1}^{N_f} \left(t_i^{\text{Unf}} - \overline{t_i^{\text{Unf}}} \right) \left(t_j^{\text{Unf}} - \overline{t_j^{\text{Unf}}} \right)$$
$$\sigma_i = \sqrt{\operatorname{cov}_{ii}}$$

Relative uncertainties with two reweightings

Correlations from Full Uncertainties

- · Size of correlations increases for more iterations
- Range of significant bin-to-bin correlations is driven by the resolution

Part 3:

Probabilistic Unfolding

Unfolding a Single Event

Reasons for Single Event Unfolding

Several interesting features:

- Keep track of unfolded- and reco-level quantities
- Possibility to implement reco cuts after the unfolding the event
- Simple derivation of secondary observables
- \Rightarrow Problem: validation needed

Reminder: Matrix-Based Unfolding Algorithms

• Probabilistic response matrix

$$R_{ij}^{(MC)} = p(r^{(MC)} \in (\operatorname{bin})_i | t^{(MC)} \in (\operatorname{bin})_j)$$

• Folding equation to connect truth-level and reco-level

$$r_i^{(MC)} = \sum_j R_{ij}^{(MC)} t_j^{(MC)}$$

• Iterative Bayesian Unfolding calculates pseudo-inverse

$$\tilde{R}_{ji}^{(n)} = \frac{R_{ij}^{(MC)} t_j^{\text{Unf},(n-1)}}{\sum_k R_{ik}^{(MC)} t_k^{\text{Unf},(n-1)}}$$

$$t^{\mathrm{Unf},(n)} = \tilde{R}^{(n)} r^{\mathrm{Meas}}$$

Matrix-based Single Event Unfolding

- Standard output of matrix-based unfolding is the full unfolded distribution
- New implementation allows to unfold also single events
- Also implemented for different matrix-based unfolding algorithms (Publication: [2310.17037])
 - \Rightarrow Possibility for cross-checks with IcINN Unfolding

Matrix-based Single Event Unfolding

 \Rightarrow Per-event unfolding enables detailed comparisons: similar results for the two methods in this example

Unfolding an EFT Process

Unfolding an EFT Process

• Simulating the process

 $pp
ightarrow Z \gamma \gamma$ with $Z
ightarrow \mu^- \mu^+$

- $\bullet \ \mathsf{MC} \to \mathsf{pure} \ \mathsf{SM}$
- Data \rightarrow SM + EFT contribution of $\mathcal{L}_{T,8} = \frac{C_{T,8}}{\Lambda^4} B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta}$ with $\frac{C_{T,8}}{\Lambda^4} = \frac{2}{\text{TeV}^4}$
- Applied detector smearing:

$$\Delta p_T = p_T \cdot \sqrt{0.025^2 + p_T^2 \cdot 3.5 \cdot 10^{-1}}$$

Unfolding an EFT Process

• Simulating the process

$$pp
ightarrow Z \gamma \gamma$$
 with $Z
ightarrow \mu^- \mu^+$

- $\bullet \ \mathsf{MC} \to \mathsf{pure} \ \mathsf{SM}$
- Data \rightarrow SM + EFT contribution of $\mathcal{L}_{T,8} = \frac{C_{T,8}}{\Lambda^4} B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta}$ with $\frac{C_{T,8}}{\Lambda^4} = \frac{2}{T_{eV^4}}$

 Z/γ^*

• Applied detector smearing:

Z

IcINN Unfolding Result

- Good convergence of the cINN unfolding already without reweighting
- Nevertheless, high- p_T region needs further iterations including reweighting
- Expected behaviour: Iterations most effective in regions with strong detector response and MC to data differences

2D IcINN Unfolding Result

 \Rightarrow Unfolding of the p_T distributions of both muons simultaneously is possible

- Problem: bin size is broader than the detector resolution \Rightarrow Distributions not really comparable
- Solution: sample single events for IcINN uniformly over the bin width

- Problem: bin size is broader than the detector resolution \Rightarrow Distributions not really comparable
- Solution: sample single events for IcINN uniformly over the bin width

- Similarities between single event IBU and IcINN in the overall distributions
- Same behaviour with more iterations: shift events from low- p_t to high- p_T

Conclusion / Outlook

- Implementation of an iterative cINN unfolding algorithm and application to a physical example [2212.08674]
- Introduction of a single-event matrix-based unfolding [2310.17037]
- Central Ideas:
 - Iteratively reduce bias towards Monte Carlo
 - Reweight on truth level
 - Keep probabilistic cINN unfolding
- Next steps:
 - Compare IcINN to other unfolding algorithms
 - Apply IcINN to real data

Thank you for your attention!

Additional Material

Analytic Toy Example

Gaussian smearing:

$$p(r|t) = \frac{1}{\sqrt{2\pi\sigma_s^2}} \exp\left(-\frac{(r - (t + \mu_s))^2}{2\sigma_s^2}\right).$$

• Bayes theorem:

$$p(t|r) = \frac{p(r|t) \cdot p(t)}{p(r)}.$$

• Unfolding a measured distribution $p_M(r)$ using Gaussian functions for p(r), p(t) and $p_M(r)$:

$$p_u(t) = \int p(t|r)p_M(r)dr = \frac{1}{2\pi} \sqrt{\frac{\sigma_r^2}{\sigma_t^2 \sigma_s^2 \sigma_M^2}} \int dr \exp\left(-\frac{(r-(t+\mu_s))^2}{2\sigma_s^2} - \frac{(t-\mu_t)^2}{2\sigma_t^2} + \frac{(r-\mu_r)^2}{2\sigma_r^2} - \frac{(r-\mu_M)^2}{2\sigma_M^2}\right)$$

• Evaluating leads to gaussian unfolded distribution with:

$$\mu_u = \frac{\mu_m \sigma_t^2 + \mu_t \sigma_s^2 - \mu_s \sigma_t^2}{\sigma_s^2 + \sigma_t^2}, \qquad \sigma_u = \frac{\sqrt{\sigma_t^2 \sigma_M^2 + \sigma_t^2 \sigma_s^2 + \sigma_s^4 \sigma_t}}{\sigma_s^2 + \sigma_t^2}.$$

cINN Loss function

Minimize loss function:

$$\begin{split} \mathcal{L} &= -\langle \log p(\theta|x,y) \rangle_{x \sim f, y \sim g} \\ &= -\langle \log p(x|\theta,y) \rangle_{x \sim f, y \sim g} - \langle \log p(\theta|y) \rangle_{y \sim g} + \langle \log p(x|y) \rangle_{x \sim f, y \sim g} \\ &= -\langle \log p(x|\theta,y) \rangle_{x \sim f, y \sim g} - \lambda \theta^2 + \text{const.} \\ &= -\langle \log p(z(x)|\theta,y) \rangle_{x \sim f, y \sim g} - \langle \log \left| \frac{\mathrm{d}z}{\mathrm{d}x} \right| \rangle_{x \sim f, y \sim g} - \lambda \ \theta^2 + \text{const.} \end{split}$$

 $\theta = \text{cINN}$ parameter, x = Parton Level, y = Detector level, z = Latent space variable

Source: arXiv [1907.02392]

Correlation Matrices

Correlation Matrices

Correlation Matrices

Truth to Reco and Back Again

Truth to Reco and Back Again

- Analytically predictable behavior
- Unfolded distribution does not converge towards truth event
- Exact position of truth event is lost in the smearing
- Unfolded distributions are in accordance with overall unfolding result
- Careful estimation of systematic uncertainties is needed

Unfolding Result IBU

Single Event Unfolding Ratios

Iterative Bayesian Unfolding (IBU)

- 1. Choose an initial prior $t_{j}^{\mathrm{Unf},(0)}$
- 2. Use Bayes theorem

$$p(t|r) = rac{p(r|t) \cdot p(t)}{\int p(r|t) \cdot p(t) \, \mathrm{d}t}$$

to calculate the pseudo-inverse

$$\tilde{R}_{ji}^{(n)} = \frac{R_{ij}^{(MC)} t_j^{\text{Unf},(n-1)}}{\sum_k R_{ik}^{(MC)} t_k^{\text{Unf},(n-1)}}$$

3. Update the prior

$$t_j^{\mathrm{Unf},(n)} = \sum_l \tilde{R}_{jl}^{(n)} r_l^{\mathrm{Meas}}$$

\Rightarrow Balance between Bias and Uncertainties

Classical Unfolding Algorithms

Three main problems with matrix-based unfolding algorithms:

- Binning choice involves an information loss
- No high-dimensional unfolding (only up to three dimensions)
- Sensitivity to "hidden" observables

 \Rightarrow Use full phase space information with ML approaches.

Omnifold

Problems:

- MC and data need to cover the same phase space
- E.g. observables based on high jet multiplicities
 ⇒ Not necessarily multi-jet-event in MC
- Range of validity?

Source: arXiv [1911.09107]