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Part 1:
cINN Unfolding
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Conditional Invertible Neural Networks (CINN)

U out U
ur = (v1 — t1(uz2,c)) @ exp(s1(u2,c)) v = u1 ® exp(s1(uz,c)) + t1(uz,c)
uz = (v2 — t2(v1,c)) @ exp(sz2(v1,c)) v2 = u2 © exp(s2(ve,c)) + t2(v1, )

Source: arXiv [1907.02392]
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cINN Unfolding - Training

|
Detector @ A “
Level < /'/ e Train on Monte Carlo simulation

e Propagate (truth, reco) event pairs through
|
L@
=/

the network
Latent

Space

e Loss forces latent space to be gaussian

e Result: conditional bijective mapping be-
tween gaussian latent space and truth-level

Particle information

Level

Source: arXiv [2006.06685]
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Unfolding

Probabilistic Unfolding Unfolding an EFT Process

cINN Unfolding - Evaluation

Single Event

Vi s 10
z

Detector
Level
4 | cINN
@
Z
00 .. 80 -
Latent D
Space

»@—”

——

Unfolded

Particle
Level

e Unfold measured data on an event-by-event
basis

e Sample in gaussian latent space

e Probabilistic single-event unfolding

Source: arXiv [2006.06685]
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cINN Unfolding - Evaluation

Unfolding an EFT Process

Single Event

Detector Tnvertible Networks or Partons to Detector and Back Again
LCVCI Marco Bellagente!, Anja Butter', Gregor Kasieczka®, Tilman Plehn', Armand Rousselot’?,
o Ramon Winterhalder!, Lynton Ardizzone?, and Ullnch Kothe?
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Source: arXiv [2006.06685]
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cINN Unfolding

x10* 10°
—— Data Truth —— MC Truth
A cINN It.1
£ 4o Data feco g —— Truth
g — MC Truth e, i
LT:E 3l MC Reco a E; 3
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Differences between Data and MC induce biases in the unfolding result
= lterative approach needed
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Probabilistic Unfolding

cINN Unfolding

cINN Unfolding terative cINN Unfolding

Unfolding an EFT Process
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Differences between Data and MC induce biases in the unfolding result
= lterative approach needed
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cINN Unfolding
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cINN Unfolding

x10* 10°
—— Data Truth —— MC Truth
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lterative cINN Unfolding
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lterative Approach

Simulation Experiment

Detector ‘
Level MC Reco \) w Measured

1. Train ¢|NN =) > Predict

NG

3. Reweight

A
Particle MC Truth \‘) — A‘ Unfolded
Level

0
Weighted MC Truth J -—

Unfolding an EFT Process

Features:

e Structures present in the data
are encoded implicitly in the
MC Truth

e General similarities to matrix
based iterative bayesian-like
unfolding

e Maintain event-wise probabilis-
tic distributions

Publication: [2212.08674]
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Results for the Iterative Approach

x10*
4
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—— Data Truth 4 — Iteration 1
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ML Unfolding based on cINNs using lterative Training Mathias Backes 7/21



cINN Unfolding Iterative cINN Unfolding Probabilistic Unfolding Unfolding an EFT Process

Results for the Iterative Approach

x10*
e Construct an analytically solvable toy model —— MC Truth
4] — - Iteration 1
§ — --- Iteration 2
e Use Bayes theorem to construct pseudo-inverse: A3 ITt:;‘:OH 1 4 A
kS ’ \
(i) — 2010 P 2 ‘
= , :
[p(rlt) - p(t)dt g
Z.
1
e Apply pseudo-inverse to measured distribution:
pul®) = [ pltlrIpas(r)ar
-10 -5 0 5 10 15 20
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Statistical Uncertainties and Correlations

Relative uncertainties without reweighting
Sources of statistical uncertainties:

10
. o —— No fluctuations
e Training of the network initialized randomly .
------- Data fluctuations
. . MC fluctuations
e Fluctuations in the data . .
1071 —— Full uncertainty

e Fluctuations in the Monte Carlo simulation

Calculation of covariance matrices with fluctuated
pseudo-experiments (bootstrap method):

Ng
1 - —
covij = N7f Z (t}Jnf _ t?nf) (t;hlf _ t]_Unf)
1

o; = \Joovi

Relative Uncertainties It. 2 = 0
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Statistical Uncertainties and Correlations

Relative uncertainties with two reweightings
Sources of statistical uncertainties:

10"
- e I —— No fluctuations
e Training of the network initialized randomly Il .
------- Data fluctuations
- _
o Fluctuations in the data = MC 1111('111;\t.1011.~
Al — Full uncertainty
o ) ) £ 10
e Fluctuations in the Monte Carlo simulation £
3
b
Calculation of covariance matrices with fluctuated g
pseudo-experiments (bootstrap method): D: 1072 e e
4
N [
12f: Unf _ 7Onf | ( ;Unf _ 70t =
COVij = — (ti —t-“)(tj’ —t.“) <
Nf 1 ‘ / ~
107({ =4 =4 =
05 = \/oovii —10 -5 0 o 10 15 20
x
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cINN Unfolding

Iterative cINN Unfolding

Probabilistic Unfolding

Correlations from Full Uncertainties

Full fluctuations It. 4 =0

-10 -5 0 5 10 15 20

1.0

0.0

UOIJR[OII0))

—1.0

e Size of correlations increases for more iterations

Full fluctuations It. i = 2

-10 -5 0 5 10 15 20

e Range of significant bin-to-bin correlations is driven by the resolution

Unfolding an EFT Process

1.0

0.0

UOTJR[OLIO))
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Probabilistic Unfolding Unfolding an EFT Process

Unfolding a Single Event
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Reasons for Single Event Unfolding

[cINN Unfolding It. 4

Several interesting features:

e Keep track of unfolded- and reco-level quan-
tities

e Possibility to implement reco cuts after the
unfolding the event

Data Reco

e Simple derivation of secondary observables

=> Problem: validation needed

0 5 10 15
Unfolded Data

Unfolding an EFT Process

104

103

10!

107
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Reminder: Matrix-Based Unfolding Algorithms

e Probabilistic response matrix 20 o008 01 R L0
(MC) MC sy (MC : 1004 0.147 10,516 0.332
7,] p(T‘( ) € (bln)z|t( ) € (bln)j) 200 . 0.8
';* 0.001 0.117 0:5968 0.27 0.024
e Folding equation to connect truth-level and reco-level )
O, 0.089 J0I686 0.247 0.004
150
FMO) _ ZB(MO) (MC) g" oo [t o0 0.6
"1._4 3 52
ﬁ 100 0.4
e lterative Bayesian Unfolding calculates pseudo-inverse )
(MC) ,Unf,(n—1) =
~(n) R, J J 50 0.2
.774 MC) Unf (n—1)
>R
% 50 100 150 200 70 00

tUnf,(n) — R(n) TMeas MC Reco pr [GGV]
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Matrix-based Single Event Unfolding

cINN Unfolding

Single Event

Unfolded
0.4 1
2 0.8
-
0.3 3
? 0.6
0.2 — =
=g 0.4 ®
0.1 o
=
5 02
0.0 0
0.0 0.5 1.0 0.0 05 1.0
00 150 200 25 0.0 a;‘

S 1
MC Reco pr [GeV]

e Standard output of matrix-based unfolding is the full unfolded distribution

e New implementation allows to unfold also single events
e Also implemented for different matrix-based unfolding algorithms (Publication: [2310.17037])

= Possibility for cross-checks with IcINN Unfolding

14/21
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Matrix-based Single Event Unfolding

x10~* x107!

— --- Measured event at z =5 —— Measured event at =5

515{ —- IBU/An. It. 1 51.5] —- IcINN/An. It. 1
E — - IBU/An. It. 2 E — - IcINN/An. It. 2
= — - IBU/An. It. 4 = — - IINN/An. It. 4
Z10 Z£10

= =

& )

b <o -

205 <05

i k=)

w2 n

=> Per-event unfolding enables detailed comparisons: similar results for the two methods in this example
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Probabilistic Unfolding

Unfolding an EFT Process

e Simulating the process
pp — Zyy with Z — p~pt
e MC — pure SM
e Data — SM + EFT contribution of
Lrs = L8 B, B B, B*?

w Crs 2
with =33~ = Tova

e Applied detector smearing:

Apr = pr - /0.0252 + p3.- 3.5 105

Z/y* z

<l
2

10°¢

—— Data Truth
Data Reco < 250 GeV
—— MC Truth
MC Reco < 250 GeV

0 50 100 150 200 2!

pr [GeV]

0 300

Unfolding an EFT Process

ML Unfolding based on cINNs using Iterative Training

Mathias Backes

16/21



cINN Unfolding Iterative cINN Unfolding Probabilistic Unfolding Unfolding an EFT Process

Unfolding an EFT Process

e Simulating the process

pp — Zyy with Z — p~pt
2% .:.. 10°
e MC — pure SM . W |
- ’ [ |
e Data — SM + EFT contribution of | -
C 75
Lrs = 4% Buy B* Bog BYP
w Crs 2 100
with =4~ = Tova £ :
N 10°
e Applied detector smearing: 5”“
Apr =pr-/0.0252 +p. 35108 T -
175
q ¥
_ 200 1
u 10
Z/v* Z 25
+ .
w = 25 50 75 100 125 150 175 200 225 10°
7 v MC+ Reco

ML Unfolding based on cINNs using lterative Training Mathias Backes 16/21



cINN Unfolding Iterative cINN Unfolding Probabilistic Unfolding Unfolding an EFT Process

IcCINN Unfolding Result

9 —— Data Truth
10 —— MC Truth
— 3 — IeINNIt. 1
T —— INN It 2
g » TINN It 3 e Good convergence of the cINN unfold-
T“lo ing already without reweighting
25
—he 107 o Nevertheless, high-pr region needs
106 further iterations including reweighting
=12
= ‘E(]):g e Expected behaviour: Iterations most
=12 effective in regions with strong detector
:"é %)jg response and MC to data differences
=12
=[£1.0
0.8
0 50 100 150 200 250 300
pr [GeV]
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2D IcINN Unfolding Result

109 300
0.05 -0.19 035 022 -0.2 -0.07 -0.18 0.32 -0. 0.8
10 o -0.05 -0.08 -0.05 -0.21 0.02 -0 03.-0,14 0.6
006 001 0.05 0.06 -0.06 -0.01 -0.01 -0.04 -0.09 -0.23 =
104 04 =
001 001 -001 001 -0.05 0.01 0.04 003 -01 -0.09 =
= = —180 2
% 5 =R = 001 0.04 006 002 002 006 0.0 00 01 -0.16 0.2 S
O, 10° & 9. £
Y o T 002 002 00 002 002 002 0.07 -0.08 -0.36 s
@ B 0.0
ISh o 120 =
102 003 -0.02 -0.03 -0.02 0.05 -00 001 -0.05 011 -0.16 =
=8
—02=
002 002 0.02 0.02 00 0.06 002 004 009 002 ‘
L 60 -
10 0,02 0,02 0.02 0.03 0.01 0.02 001 0.06 -0.02 017 —0.4
-0.02 -0.02 -0.01 -0.03 -0.01 -0.02 -0.02 -0.03 -0.11 -0.21
10 . 0.6
120 180 60 120 180 240 300
pr [GeV] pr [GeV]

= Unfolding of the p distributions of both muons simultaneously is possible
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Single Event Unfolding

10 — - Measured event at 45 GeV —— Measured event at 45 GeV
’ — IBUIt. 1 1.0 —— IcINN It.1
1l — IBUIt. 2 o —— IcINN It.2
08 IBUIt. 3 2 0s IcINN 1t.3
= 0.
Z
0.6 = 0.6
=

=

Single event distribution

o

O'GU 50 100 150 200 250 50 100 150 200 250
pr [GeV] pr [GeV]

e Problem: bin size is broader than the detector resolution = Distributions not really comparable

e Solution: sample single events for ICINN uniformly over the bin width
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Single Event Unfolding

10 — - Measured event at 45 GeV 1.0 —— Measured event at 45 GeV
— IBUIt. 1 —— I[eINNIt. 1
1l — IBUIt. 2 o —— I[cINNIt. 2
0.8 IBUIt. 3 208 IINN It. 3
=]
0.6 Zos
=1

0.4

Single event distribution

0.2

O'GU 50 100 150 200 250 50 100 150 200 250

pr [GeV] pr [GeV]

e Problem: bin size is broader than the detector resolution = Distributions not really comparable

e Solution: sample single events for ICINN uniformly over the bin width
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cINN Unfolding

Single event distribution

2.0

Iterative cINN Unfolding

x10~"

Probabilistic Unfolding

Single Event Unfolding

— - Measured event at 185 GeV
— IBUIt. 1
— IBUIt. 2

IBU It. 3 [

1.0 [ [
0.5
=
00 50 100 150 200 250

e Similarities between single event IBU and IcINN in the overall distributions

e Same behaviour with more iterations: shift events from low-p; to high-p

pr [GeV]

Unfolding an EFT Process

x107!
—— Measured event at 185 GeV

301 — I(-L\}\I It. 1
= — IcINN It. 2
-é 25 IcINN It. 3
2
Z20 —
; -
g 15
%
-
Eol-o [
A

0.5

0.0

50 100 150 200 250
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Conclusion / Outlook

e Implementation of an iterative cINN unfolding algorithm
and application to a physical example [2212.08674]

e Introduction of a single-event matrix-based unfolding
[2310.17037]

e Central Ideas:
- lteratively reduce bias towards Monte Carlo IC ] J ] q

- Reweight on truth level
- Keep probabilistic cINN unfolding

o Next steps:

- Compare IcINN to other unfolding algorithms
- Apply IcINN to real data
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Thank you for your attention!

ML Unfolding based on cINNs using Iterative Training Mathias Backes 21/21



cINN Unfolding Iterative cINN Unfolding Probabilistic Unfolding Unfolding an EFT Process

Additional Material
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Analytic Toy Example

e Gaussian smearing:

r— s))?
i) = g e (~ ).

p(rft) - p(t)
p(r)
Unfolding a measured distribution p s () using Gaussian functions for p(r), p(t) and ps(r):

1 r—(t+ps)? E—pw)?  (r—pr)? (r—pm)?
t) = t dr d — _
po®) = [ pampastiar = o |0 o [ares (<20 5

e Evaluating leads to gaussian unfolded distribution with:

2 2 2 .2 4
Pm0F + peo? — psod \Oioy T 0y05 + 050t

Hu = ) Ou =
02 + o2 02 + o2

e Bayes theorem:

p(tlr) =
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cINN Loss function

Minimize loss function:

L= _<10gp(0|$7y)>:v~f,y~g
—(log p(10,y))zn f,y~g — (108 P(O1Y))y~g + (log P(x[Y))zn f,y~g
—(log (|0, ) e~ fy~g — 02 4 const.

dx

7(10gp(2(1)|97 y)>z~f,y~g - <10g >zwf,y~g —A 92 ~+ const.

6 = cINN parameter, x = Parton Level, y = Detector level, z = Latent space variable

Source: arXiv [1907.02392]
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cINN Unfolding Iterative cINN Unfolding

Probabilistic Unfolding

Correlation Matrices

MC fluctuations It. ¢ =0

20
15 ||

10

T
o (@4

-10

-10 -5 0 5 10 15 20

MC fluctuations It. 7 = 2

1.0
15
0.5
a 10
S
= <
0.0 ;DZ 8 9
g 0
—0.5 5
-10

—10 -10 -5 0 5 10 15 20

Unfolding an EFT Process
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Probabilistic Unfolding

Correlation Matrices

Data fluctuations It. ¢ =0
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Correlation Matrices

No fluctuations It. =0 No fluctuations It. 7 = 2
1.0 0 1.0
0.5 0.5
Q Q
= S
0.0 ;'j 0.0 2:
g g
—0.5 —-0.5
—1.0 -1.0
xr X
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Truth to Reco and Back Again

— Truth event at 2 = 10
Measured

— - IBU/An. It. 1

— - IBU/An. It. 2

IBU/An. It. 4

—
[

—
=}

o
5

Single event distribution

= =
=) wt

o
13

Single event distribution

Probabilistic Unfolding

Unfolding an EFT Process

—— Truth event at = 10
Measured
— == IcINN/An. T
— - IcINN/An. It.
IcINN/An.

e
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Truth to Reco and Back Again

x10~1

—— Truth event at z =4

e Analytically predictable behavior Measured
— -= [cINN/An. It. 1
IcINN/An. It. 2
IcINN/An. It. 4

An. It. oo

=
ot

e Unfolded distribution does not con-
verge towards truth event

g
o

e Exact position of truth event is lost in
the smearing

o
3

e Unfolded distributions are in accor-
dance with overall unfolding result

Single event distribution

e Careful estimation of systematic un-
certainties is needed

—

[ R=R

IcINN
Analytic

10 15 20

|
=

|
ot
o
o
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Single Event Unfolding

x107! x107!
—— Measured event at 45 GeV 3.5] —— Measured event at 185 GeV
417 — IeINN It.1 L — IcINN It.1 £

= | — LINNI2 h”’ =30 — 1NN 12
2 IeINN 1t.3 M S IINN 1t.3 [
= 525
=3 =
Z g 2.0
= =N t
= 5
- -
< o
< )
Eﬁb = Egl 0 ’_ E
% 1 — 3]

0.5

0
| L 0.0 = —
0= 0 o 50 0 0 50 0o 10 200 250
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cINN Unfolding

terative cINN Unfolding Probabilistic Unfolding Unfolding an EFT Process

Unfolding Result IBU
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Single Event Unfolding Ratios
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cINN Unfolding Iterative cINN Unfolding Probabilistic Unfolding Unfolding an EFT Process

lterative Bayesian Unfolding (IBU)

1. Choose an initial prior tUnf ©) .
O
2. Use Bayes theorem w | i Truth
g — Iteration 5
p(tlr) = p(r[t) - p(t) = 04 —— Iteration 2
fp rlt) - p(t) dt’ = Iteration 1
i 4; 0.3 —— Iteration 0
to calculate the pseudo-inverse 5
(MC) ,Unf,(n—1) 3 0.2
pm o By b =
Jl Zk R(MC’ Unf ,(n—1) L‘g 01
o
3. Update the prior 00
Unf,(n) _ (1)  Meas 0 2 4 6 8 10
tj =2 R pr

l

=> Balance between Bias and Uncertainties
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Classical Unfolding Algorithms

Three main problems with matrix-based unfolding algorithms:
e Binning choice involves an information loss
e No high-dimensional unfolding (only up to three dimensions)

e Sensitivity to "hidden" observables

= Use full phase space information with ML approaches.
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cINN Unfolding

Detector-level

_ Data
[+
=
=}
k=
z
Step 1:
Reweight Sim. to Data
Data,
Vno1 —— Wn
.2 - .
bt Simulation
< L X
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>
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—

Iterative cINN Unfolding

Pull Weights

—_—
<

Push Weights

Omnifold

Particle-level

Step 2:

Reweight Gen.

Un—1 — VUn

Generation

=

—

Probabilistic Unfolding Unfolding an EFT Process

Problems:

e MC and data need to cover the same phase
space

e E.g. observables based on high jet multiplicities
= Not necessarily multi-jet-event in MC

e Range of validity?

Source: arXiv [1911.09107]
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