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Conditional Invertible Neural Networks (cINN)

u⃗ v⃗

u1 = (v1 − t1(u2, c))⊘ exp(s1(u2, c))

u2 = (v2 − t2(v1, c))⊘ exp(s2(v1, c))

v1 = u1 ⊙ exp(s1(u2, c)) + t1(u2, c)

v2 = u2 ⊙ exp(s2(v2, c)) + t2(v1, c)

Source: arXiv [1907.02392]
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cINN Unfolding - Training

• Train on Monte Carlo simulation

• Propagate (truth, reco) event pairs through
the network

• Loss forces latent space to be gaussian

• Result: conditional bijective mapping be-
tween gaussian latent space and truth-level
information

Source: arXiv [2006.06685]
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cINN Unfolding - Evaluation

• Unfold measured data on an event-by-event
basis

• Sample in gaussian latent space

• Probabilistic single-event unfolding

Source: arXiv [2006.06685]
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cINN Unfolding
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Differences between Data and MC induce biases in the unfolding result
⇒ Iterative approach needed
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Iterative cINN Unfolding
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Iterative Approach

1. Train c NN 2. Predict

MC Truth

MC Reco

Unfolded

3. Reweight

Measured

ExperimentSimulation

Detector
Level

Particle
Level

Weighted MC Truth 

 Ic NN

Features:

• Structures present in the data
are encoded implicitly in the
MC Truth

• General similarities to matrix
based iterative bayesian-like
unfolding

• Maintain event-wise probabilis-
tic distributions

Publication: [2212.08674]
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Results for the Iterative Approach
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Results for the Iterative Approach

• Construct an analytically solvable toy model

• Use Bayes theorem to construct pseudo-inverse:

p(t|r) =
p(r|t) · p(t)∫
p(r|t) · p(t) dt

,

• Apply pseudo-inverse to measured distribution:

pu(t) =

∫
p(t|r)pM (r)dr
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Statistical Uncertainties and Correlations

Sources of statistical uncertainties:

• Training of the network initialized randomly

• Fluctuations in the data

• Fluctuations in the Monte Carlo simulation

Calculation of covariance matrices with fluctuated
pseudo-experiments (bootstrap method):

covij =
1

Nf

Nf∑
1

(
tUnf
i − tUnf

i

)(
tUnf
j − tUnf

j

)
σi =

√
covii

Relative uncertainties without reweighting
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Correlations from Full Uncertainties
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• Size of correlations increases for more iterations

• Range of significant bin-to-bin correlations is driven by the resolution
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Unfolding a Single Event
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Reasons for Single Event Unfolding

Several interesting features:

• Keep track of unfolded- and reco-level quan-
tities

• Possibility to implement reco cuts after the
unfolding the event

• Simple derivation of secondary observables

⇒ Problem: validation needed
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Reminder: Matrix-Based Unfolding Algorithms

• Probabilistic response matrix

R
(MC)
ij = p(r(MC) ∈ (bin)i|t(MC) ∈ (bin)j)

• Folding equation to connect truth-level and reco-level

r
(MC)
i =

∑
j

R
(MC)
ij t

(MC)
j

• Iterative Bayesian Unfolding calculates pseudo-inverse

R̃
(n)
ji =

R
(MC)
ij t

Unf,(n−1)
j∑

k R
(MC)
ik t

Unf,(n−1)
k

tUnf,(n) = R̃(n) rMeas
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Matrix-based Single Event Unfolding
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• Standard output of matrix-based unfolding is the full unfolded distribution

• New implementation allows to unfold also single events

• Also implemented for different matrix-based unfolding algorithms (Publication: [2310.17037])

⇒ Possibility for cross-checks with IcINN Unfolding

ML Unfolding based on cINNs using Iterative Training Mathias Backes 14 / 21

https://arxiv.org/abs/2310.17037


cINN Unfolding Iterative cINN Unfolding Probabilistic Unfolding Unfolding an EFT Process

Matrix-based Single Event Unfolding
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⇒ Per-event unfolding enables detailed comparisons: similar results for the two methods in this example
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Unfolding an EFT Process
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Unfolding an EFT Process
• Simulating the process

pp → Zγγ with Z → µ−µ+

• MC → pure SM

• Data → SM + EFT contribution of

LT,8 =
CT,8

Λ4 BµνBµνBαβB
αβ

with
CT,8

Λ4 = 2
TeV4

• Applied detector smearing:

∆pT = pT ·
√
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IcINN Unfolding Result
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• Good convergence of the cINN unfold-
ing already without reweighting

• Nevertheless, high-pT region needs
further iterations including reweighting

• Expected behaviour: Iterations most
effective in regions with strong detector
response and MC to data differences
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2D IcINN Unfolding Result
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⇒ Unfolding of the pT distributions of both muons simultaneously is possible

ML Unfolding based on cINNs using Iterative Training Mathias Backes 18 / 21



cINN Unfolding Iterative cINN Unfolding Probabilistic Unfolding Unfolding an EFT Process

Single Event Unfolding
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• Problem: bin size is broader than the detector resolution ⇒ Distributions not really comparable

• Solution: sample single events for IcINN uniformly over the bin width
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Single Event Unfolding
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• Similarities between single event IBU and IcINN in the overall distributions

• Same behaviour with more iterations: shift events from low-pt to high-pT
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Conclusion / Outlook

• Implementation of an iterative cINN unfolding algorithm
and application to a physical example [2212.08674]

• Introduction of a single-event matrix-based unfolding
[2310.17037]

• Central Ideas:
- Iteratively reduce bias towards Monte Carlo
- Reweight on truth level
- Keep probabilistic cINN unfolding

• Next steps:
- Compare IcINN to other unfolding algorithms
- Apply IcINN to real data
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Thank you for your attention!
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Additional Material
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Analytic Toy Example

• Gaussian smearing:
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• Bayes theorem:
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• Unfolding a measured distribution pM (r) using Gaussian functions for p(r), p(t) and pM (r):
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• Evaluating leads to gaussian unfolded distribution with:
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cINN Loss function

Minimize loss function:

L = −⟨log p(θ|x, y)⟩x∼f,y∼g

= −⟨log p(x|θ, y)⟩x∼f,y∼g − ⟨log p(θ|y)⟩y∼g + ⟨log p(x|y)⟩x∼f,y∼g

= −⟨log p(x|θ, y)⟩x∼f,y∼g − λθ2 + const.

= −⟨log p(z(x)|θ, y)⟩x∼f,y∼g − ⟨log
∣∣∣∣ dzdx

∣∣∣∣⟩x∼f,y∼g − λ θ2 + const.

θ = cINN parameter, x = Parton Level, y = Detector level, z = Latent space variable

Source: arXiv [1907.02392]
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Correlation Matrices
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Correlation Matrices
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Correlation Matrices
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Truth to Reco and Back Again
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Truth to Reco and Back Again

• Analytically predictable behavior

• Unfolded distribution does not con-
verge towards truth event

• Exact position of truth event is lost in
the smearing

• Unfolded distributions are in accor-
dance with overall unfolding result

• Careful estimation of systematic un-
certainties is needed
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Single Event Unfolding
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Unfolding Result IBU
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Single Event Unfolding Ratios
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Iterative Bayesian Unfolding (IBU)

1. Choose an initial prior tUnf,(0)
j

2. Use Bayes theorem

p(t|r) =
p(r|t) · p(t)∫
p(r|t) · p(t) dt

,

to calculate the pseudo-inverse
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3. Update the prior
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⇒ Balance between Bias and Uncertainties
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Classical Unfolding Algorithms

Three main problems with matrix-based unfolding algorithms:

• Binning choice involves an information loss

• No high-dimensional unfolding (only up to three dimensions)

• Sensitivity to "hidden" observables

⇒ Use full phase space information with ML approaches.
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Omnifold

Problems:

• MC and data need to cover the same phase
space

• E.g. observables based on high jet multiplicities
⇒ Not necessarily multi-jet-event in MC

• Range of validity?

Source: arXiv [1911.09107]

ML Unfolding based on cINNs using Iterative Training Mathias Backes 21 / 21

https://arxiv.org/abs/1911.09107v2

	cINN Unfolding
	Iterative cINN Unfolding
	Probabilistic Unfolding
	Unfolding an EFT Process
	

