Differentiable Simulation of a Liquid Argon TPC for multi-dimensional calibration [arXiv:2309.04639](https://arxiv.org/pdf/2309.04639.pdf)

Pierre Granger granger@apc.in2p3.fr

APC (Astroparticule et cosmologie) - Paris

November 28, 2023

OUTLINE

1. [Some context](#page-2-0)

2. [Writing a differentiable simulator](#page-5-0)

3. [Results](#page-13-0)

Liquid Argon Time Projection Chambers (LArTPCs)

Signal production steps:

- Argon ionisation
- Ionisation electrons drifted by E field
- Electrons readout on anode plane

- Allows to get precise 3D picture of the interaction
- Relies on multiple physical processes
	- \rightarrow importance of calibration

Typical LArTPC calibration

Calibration of the different physical parameters are typically done in different studies.

 \rightarrow can be simplified with a differentiable simulator

Using gradient-based optimization

Real Data, X

Starting from a non-differentiable LArTPC **SIMULATOR M A NON-DIFFERENTI**
Electric field (*e*)
Electric field (*e*)

Our work: take existing DUNE near-detector simulation [\(arXiv:2212.09807\)](https://arxiv.org/abs/2212.09807) and make it differentiable.

- Retain physics quality of a tool used collaboration-wide while adding ability to calculate gradient
- Demonstrate the use of this differentiable simulation for gradient-based calibration

\rightarrow How to do it practice?

ADC counts per

Rewriting the simulator

Numba code using CUDA IIT compiled kernels \rightarrow Framework change for diff version:

- Differentiable version rewritten using [EagerPy\(](https://eagerpy.jonasrauber.de/)backend agnostic)/PyTorch, which are based around tensor operations.
- New version rewritten in a vectorized way to fit within these frameworks

Performance drawbacks:

- Use of dense tensors to represent a sparse problem
- Moving from CUDA JIT compiled dedicated kernel to a long chain of generic kernels (vectorized operations).
-

Memory challenge

Because of the use of dense tensors, memory $\propto \Delta_z \times \cot \theta$. (length in drift direction and angle) \rightarrow introduced automatic memory estimation for each batch to estimate best pixel chunk size.

 \rightarrow gradient accumulation required by backward pass also saturate the memory

Memory challenge: checkpointing

Drawing inspired by https://eithub.com/cybertronal/gradient-checkpointing

Reducing the memory used through PyTorch checkpointing:

- Gradient accumulation memory intensive due to stored intermediate results
- Trades memory for computation time by recomputing intermediates

[source](https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/gradient-checkpointing-nin.ipynb)

Differentiable relaxations

The base simulation contains **discrete operations** \rightarrow non-differentiable. Requires differentiable relaxations to be able to get usable gradients.

- Cuts (e.g. $x > 0$) \rightarrow smooth sigmoid threshold
- Integer operations (e.g. floor division) \rightarrow floating point (e.g. regular division)
- Discrete sampling \rightarrow interpolation

Checking the result

Checking that the relaxations don't modify the simulator output.

Average deviation of 0.04 ADC/pixel \rightarrow well below the typical noise level of few ADCs.

Optimization of the Model Parameters

- • Input particle segments (position and energy deposition): χ
- Model parameters: θ
- Differentiable simulation: $f(x, \theta)$
- Target data: F_{target}
- 1. Choose the initial parameter values θ_0
- 2. Run the forward simulation $f(\chi, \theta_0)$
- 3. Compare the simulation output and the target data with a loss function $\mathcal{L}(f(\chi,\theta_0), F_{\text{target}})$
- 4. Calculate gradients for the parameters $\nabla_{\theta} \mathcal{L}(f(\chi, \theta_0), F_{\text{target}})$
- 5. Update parameter values $\theta_0 \rightarrow \theta_i$ to minimize the loss Iterate step 2. to 5.

Optimization choices: Loss function

Loss function choice is crucial for minimization quality

[Source](https://rtavenar.github.io/blog/dtw.html)

Two main ways of computing the loss:

- Comparison of 3D voxel grids of charges $(x, y, t \rightarrow z, q)$.
	- Difficulty of taking gradients through discrete pixelization.
	- Risk of flat loss if not enough overlap in distributions.
- Considering the waveforms for each pixel (time sequence) and using Dynamic Time Warping
	- Using a relaxed SoftDTW version that is differentiable.

Input sample and simulated detector

- • Input sample consisting of 1 GeV simulated muon tracks
- Second sample of muons, pions and protons (1 GeV to 3 GeV)
- Geometry of a DUNE ND module: 60 cm \times 60 cm \times 120 cm
- Noise model available in simulator but not used.

Doing a "closure test" based on simulated data, $F_{\text{target}} = f(\chi, \theta_{\text{target}})$: \rightarrow Fit of 6 physical parameters simulteanously on simulated data for multiple targets and initial values.

RESULTS

We have convergence of the fits for all the parameters.

RESULTS

Parameters convergence 6D simulteanous fit converging under *L*[∞]

Demonstration of gradient-based calibration on simulation data through a "closure test" ($\theta \rightarrow \theta_{\text{target}}$).

Pierre Granger [Differentiable Simulation of a Liquid Argon TPC](#page-0-0) · [Results](#page-13-0) [◦](#page-19-0) ◦ ◦ ◦ ◦ ↑ ↑ 20

Demonstration of multidimensional fit usefulness

The various physical parameters are correlated. Fitting them independently leads to some inaccuracies and biases.

Fit sensitivity

Going further

Detector readout

Combining our differentiable simulator with an inverse mapping would allow for direct model constraining, fully data driven: $\mathcal{L}_{\textsf{CC}} = (\mathcal{F}(NN(y_{\textsf{data}})) - y_{\textsf{data}})^2$

CONCLUSIONS

Proof of concept for the calibration of a LArTPC using a differentiable simulator. Multidimensional fit converging correctly on simulated data with the differentiable simulator.

Upcoming challenges:

- Applying this framework to real data (DUNE 2x2 ND data)
- Improving the performances (not limiting at the moment)
- Fitting more physical parameters (such as Efield map)

Going further:

• Extend the framework to inverse problem solving.

November 28, 2023 granger@apc.in2p3.fr