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Liquid Argon Time Projection Chambers (LArTPCs)

Signal production stepsSignal production stepsSignal production stepsSignal production stepsSignal production stepsSignal production stepsSignal production stepsSignal production stepsSignal production stepsSignal production stepsSignal production stepsSignal production stepsSignal production stepsSignal production stepsSignal production stepsSignal production stepsSignal production steps:
• Argon ionisation
• Ionisation electrons drifted by E
field

• Electrons readout on anode plane

• Allows to get precise 3D picture of
the interaction

• Relies on multiple physical
processes
→ importance of calibration
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Typical LArTPC calibration

e− lifetime calibration
Energy conversion calibration.

Calibration of the different physical parameters are typically done in different
studies.
→ can be simplified with a differentiable simulator
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Using gradient-based optimization

Forward
Model

Parameters

Differentiable
Foward Model

Loss
Requires forward
model to be
differentiable:

Gradient Descent
on 

Synthetic Data

Real Data, X

-
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Starting from a non-differentiable LArTPC
simulator

Our work: take existing DUNE
near-detector simulation
(arXiv:2212.09807) and make it
differentiable.
• Retain physics quality of a tool used
collaboration-wide while adding
ability to calculate gradient

• Demonstrate the use of this
differentiable simulation for
gradient-based calibration

→ How to do it practice?
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Rewriting the simulator
Numba code using CUDA JIT compiled kernels→ Framework change for diff
version:

• Differentiable version rewritten using EagerPy(backend agnostic)/PyTorch,
which are based around tensor operations.

• New version rewritten in a vectorized way to fit within these frameworks

Performance drawbacks:
• Use of dense tensors to represent a
sparse problem

• Moving from CUDA JIT compiled
dedicated kernel to a long chain of
generic kernels (vectorized
operations).
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Memory challenge
Because of the use of dense tensors, memory∝ ∆z × cot θ. (length in drift
direction and angle)→ introduced automatic memory estimation for each batch
to estimate best pixel chunk size.
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→ gradient accumulation required by backward pass also saturate the memory
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Memory challenge: checkpointing

Reducing the memory used
through PyTorch checkpointing:
• Gradient accumulation
memory intensive due to
stored intermediate results

• Trades memory for
computation time by
recomputing intermediates

source
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Differentiable relaxations
The base simulation contains discrete operations→ non-differentiable.
Requires differentiable relaxations to be able to get usable gradients.
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• Cuts (e.g. x > 0)→ smooth sigmoid threshold
• Integer operations (e.g. floor division)→ floating point (e.g. regular division)
• Discrete sampling→ interpolation
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Checking the result

Checking that the
relaxations don’t modify
the simulator output.

Average deviation of
0.04 ADC/pixel→ well
below the typical noise
level of few ADCs.
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Optimization of the Model Parameters
• Input particle segments (position and energy deposition): χ
• Model parameters: θ
• Differentiable simulation: f (χ, θ)
• Target data: Ftarget

1. Choose the initial parameter values θ0
2. Run the forward simulation f (χ, θ0)
3. Compare the simulation output and the
target data with a loss function
L(f (χ, θ0), Ftarget)

4. Calculate gradients for the parameters
∇θL(f (χ, θ0), Ftarget)

5. Update parameter values θ0 → θi to
minimize the loss
Iterate step 2. to 5.
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Optimization choices: Loss function

Loss function choice is
crucial for minimization
quality

Source
Two main ways of computing the loss:

• Comparison of 3D voxel grids of charges (x, y, t→ z, q).
• Difficulty of taking gradients through discrete pixelization.
• Risk of flat loss if not enough overlap in distributions.

• Considering the waveforms for each pixel (time sequence) and using Dynamic
Time Warping

• Using a relaxed SoftDTW version that is differentiable.
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Input sample and simulated detector

• Input sample consisting of 1 GeV
simulated muon tracks

• Second sample of muons, pions and
protons (1 GeV to 3GeV)

• Geometry of a DUNE ND module:
60 cm× 60 cm× 120 cm

• Noise model available in simulator
but not used.

Doing a ”closure test” based on simulated data, Ftarget = f (χ, θtarget):
→ Fit of 6 physical parameters simulteanously on simulated data for multiple
targets and initial values.
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Results
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We have convergence of the fits for all the parameters.
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Results
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Parameters convergence 6D simulteanous fit converging under L∞
Demonstration of gradient-based calibration on simulation data through a
“closure test” (θ → θtarget).

Pierre Granger Differentiable Simulation of a Liquid Argon TPC · Results ◦ ◦ • ◦ ◦ ◦ ◦ Page 16 / 20



Demonstration of multidimensional fit usefulness
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The various physical parameters are correlated. Fitting them independently leads
to some inaccuracies and biases.
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Fit sensitivity

Different sensitivities to the various
physical parameters (w.o. noise).

Decrease in sensitivity when considering
noise.
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Going further

Energy deposits dE/dx
(inaccessible in data)
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Detector readout

Combining our differentiable simulator with an inverse mapping would allow for
direct model constraining, fully data driven: LCC = (F(NN(ydata))− ydata)

2
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Conclusions

Proof of concept for the calibration of a LArTPC using a differentiable simulator.
Multidimensional fit converging correctly on simulated data with the
differentiable simulator.
Upcoming challenges:

• Applying this framework to real data (DUNE 2x2 ND data)
• Improving the performances (not limiting at the moment)
• Fitting more physical parameters (such as Efield map)

Going further:
• Extend the framework to inverse problem solving.
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