First evidence for neutrino tagging

Bianca De Martino

On behalf of the NA62 collaboration

Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

IRN Neutrino 2023, Karlsruhe

2 The NA62 experiment

3 Proof of principle of Neutrino Tagging

- Analysis strategy
- Offline selection
- Event yield background and signal
- Revealing signal region content

- 2) The NA62 experiment
- Proof of principle of Neutrino Tagging
 - Analysis strategy
 - Offline selection
 - Event yield background and signal
 - Revealing signal region content

- Neutrino Tagging: new paradigm for accelerator based neutrino experiments
- Instrument a beam line with spectrometers
- **Kinematically reconstruct each** *v* originating from a $\pi^+ \rightarrow \mu^+ v_\mu$ decay \rightarrow *tagged v*
- Associate *interacting* v at Far Detector to its tagged v
- Main advantages:
 - energy resolution < 1% (VS 15% when measured with interaction), no energy scale
 - improved beam knowledge

Physics potential

- At a tagged Short Baseline Experiment:
 - precise flux knowledge \rightarrow measure at 1% level v_e x-sec and v_{μ} differential x-sec
 - tagged v energy determined independently of its interaction \rightarrow refine interaction models
- These measurements would strongly improve the physics potential of upcoming LBE:
- At a tagged Long Baseline Experiment:
 - setup with a natural water Cherenkov detector (like KM3NeT/ORCA) would allow to measure δ_{CP} with unprecedented precision.
 - case study: P2O (Protvino to KM3NeT/ORCA)

2 The NA62 experiment

3 Proof of principle of Neutrino Tagging

- Analysis strategy
- Offline selection
- Event yield background and signal
- Revealing signal region content

The NA62 experiment

NA62 features

- NA62 is a fixed-target experiment in the North Area of the SPS at CERN
- NA62's main purpose is the measurement of $\Re r(K^+ \to \pi^+ v \bar{v})$ (SM signal $\Re r = (8.4 \pm 1.0) \cdot 10^{-11}$)
- NA62's high intensity kaon beam at 75 GeV/c delivers a nominal rate of $\mathcal{O}(10^{12})K^+$ decays per year
- Beam composition: **6%** K^+ , 70% π^+ , 23% p, 750MHz over **3s spills**
- Can be exploited as miniature tagged experiment

Tagging proof of principle at NA62

• Exploit K^+ main decay channel: $K^+ \rightarrow \mu^+ + \nu_{\mu}$

- K^+ reconstructed by beam spectrometer
- μ^+ reconstructed by downstream spectrometer
- v interacting in the EM calorimeter (20ton LKr)
- Interaction channel: CC-DIS: $\nu \rightarrow$ shower + μ^-
- Exploit μ⁺, shower and μ⁻ for triggering strategy

Bianca De Martino

- GigaTracKer (GTK): silicon pixel spectrometer, reconstructs time and 4-momentum of incoming beam particles
- 130 ps hit time resolution
- $\sigma_p/p = 0.2\%$, $\sigma_{\theta} = 16$ mrad
- 60.8 × 27 mm silicon sensor

• STRAW: straw tube spectrometer that reconstructs the properties of charged particles produced in K decays

• Liquid Krypton calorimeter (LKr): electromagnetic calorimeter filled with about 9000 l of liquid Krypton at 120K

• MUon Veto (MUV) 1 and 2: 66 ton hadron calorimeter

• MUon Veto 3 (MUV3): 50 mm thick scintillator tiles, placed behind LKr, MUV1 and 2, and an iron wall, used for muon identification

2) The NA62 experiment

3 Proof of principle of Neutrino Tagging

- Analysis strategy
- Offline selection
- Event yield background and signal
- Revealing signal region content

Analysis strategy

Analysis strategy

- Backgrounds assessed with data driven method on side bands; 2 background sources:
 - Overlaid $K\mu\nu$: $K \to \mu\nu$ with extra in-time activity \to studied in side bands of $|d_{LKr\nu}|$
 - Mis-reconstructed kaon decays \rightarrow studied in side bands of m_{miss}^2 .

First evidence for neutrino tagging

Analysis strategy

- Data sample: $5 \cdot 10^{12}$ effective K^+ decays, collected in 2022
- Expected event rate:

$$N^{exp}_{\text{signal}} = N_{K^+} \cdot \mathscr{B}(K^+ \to \mu^+ \nu_{\mu}) \cdot P_{\text{int,LKr}} \cdot \epsilon_{\text{signal}}$$

• Use $K^+ \rightarrow \mu^+ v_{\mu}$ (no *v* interaction) decays as normalization sample:

$$\begin{split} N_{K^+} &= \frac{N_{\rm norm}}{\epsilon_{\rm norm}} \cdot \mathscr{B}(K^+ \to \mu^+ \nu_{\mu}) \\ N_{\rm signal}^{exp} &= N_{\rm norm} \cdot \frac{\epsilon_{\rm signal}}{\epsilon_{\rm signal}} \cdot P_{\rm int,LKr} \end{split}$$

- As many common selection and trigger criteria as possible to signal and normalization
- Signal and normalization common efficiency terms cancel in the ratio
- Signal efficiency estimated thanks to a MC sample (GENIE)

Offline selection

Common selection - signal and normalization

- Single positively charged track matched to LKr, MUV1, MUV2 and MUV3 candidates
- μ^+ particle identification
- photon rejection
- *v* extrapolated position inside LKr acceptance

v interaction offline selection

- Step 1: *v* interaction associated to activity in LKr, MUV1, MUV2, MUV3 in time and space
- Step 2: Extra activity rejection
- Step 3: Energy requirements
- Step 4: Interaction topology

Bianca De Martino

Interaction topology

First evidence for neutrino tagging

Interaction topology

Bianca De Martino

Normalized count

0.08

0.06

0.04

0.02

0

2

First evidence for neutrino tagging

Signal and background yields

Variables for signal yield computation

•
$$P_{int,LKr} = (6.0 \pm 0.1_{syst}) \cdot 10^{-11}$$

•
$$N_{norm} = (1.49 \pm 0.02_{syst}) \cdot 10^{11}$$
 from $K \mu v$ event yield

•
$$\frac{\epsilon_{\text{signal}}}{\epsilon_{norm}} = \epsilon_{\text{signal only}}^{\text{trig}} \cdot \epsilon_{\text{signal only}}^{\text{interaction}} = (2.55 \pm 0.15_{stat} \pm 0.04_{syst})\%$$

$$N_{\text{signal}}^{exp} = 0.228 \pm 0.014_{stat} \pm 0.011_{syst}$$

Summary

• In 2022 data sample $(5 \cdot 10^{12} K^+ \text{ decays})$:

 $N_{\text{signal}}^{exp} = 0.228 \pm 0.014_{stat} \pm 0.011_{syst},$

$$\begin{split} N_{bkg}^{exp}(Mis - recoK^+) &= 0.0014 \pm 0.0007_{stat} \pm 0.0002_{syst}, \\ N_{bkg}^{exp}(OVK\mu\nu) &= 0.04 \pm 0.02_{stat} \pm 0.01_{syst}. \end{split}$$

• Signal-to-noise: 5.5

- Probability for total expected event yield $N_{events}^{exp} = 0.2694$
 - for 0 data events p = 0.7638
 - for 1 data event p = 0.2058
 - for 2 data events p = 0.0277.

Results approved for unblinding by the NA62 collaboration

Revealing signal region content

Two events are found in signal region!

Corresponds to probability p = 0.0277 for total expected event yield $N_{events}^{exp} = 0.2694$

Event Display - Event A

• $p_{\mu^+} = 25.25 \text{ GeV/c}$

Event Display - Event B

- $p_{\mu^+} = 18.74 \text{ GeV/c}$
- $E_{\nu} = 57.5 \text{ GeV}$
- $p_{K^+} = 76.2 \text{ GeV/c}$

Conclusions

- NA62 experiment has been exploited as a miniature tagged experiment to perform proof of principle of the neutrino tagging technique
- Reconstruct $K^+ \rightarrow \mu^+ v_\mu$ decay with all particles detected
- Blind analysis performed, expected $N_{signal}^{exp} = 0.228 \pm 0.014_{stat} \pm 0.011_{syst}$ signal events
- Signal-to-noise ratio 5.5
- 2 events found in signal region upon opening the box
- First tagged neutrino candidates in history!
- Achieved crucial first step towards establishment of tagging as effective paradigm

Thank you for your attention!

Signal yield

$$N_{\text{signal}}^{exp} = N_{K\mu\nu} \cdot A_{K\mu\nu\star}^{int} \cdot \epsilon^{RV} \cdot \epsilon_{E5}^{sel} \cdot \epsilon_{MOQX}^{sel} \cdot \epsilon_{HLT}^{sel} \cdot P_{int,LKr}$$
$$= 0.228 \pm 0.014_{stat} \pm 0.011_{syst}$$

Contribution	Value and uncertainty	
P _{int,LKr}	$(6.0 \pm 0.1_{syst}) \cdot 10^{-11}$	
$N_{K\mu u}$	$(1.49 \pm 0.02_{syst}) \cdot 10^{11}$	
$A_{K\mu\nu*}^{int}$	$0.0421 \pm 0.0025_{stat} \pm 0.0015_{syst}$	
ϵ^{RV}	$0.816 \pm 0.014_{syst}$	
$\epsilon^{MOQX}_{K\mu\nu*}$	$0.976 \pm 0.007_{stat} \pm 0.001_{syst}$	
$\epsilon^{E5}_{K\mu ust}$	$0.82 \pm 0.01_{stat} \pm 0.01_{syst}$	
$\epsilon_{K\mu\nu*}^{HLT/sel}$	$0.932 \pm 0.002_{stat}$	

(1)

Signal candidates properties

Variable	Event A	Event B
d _{LKrv}	31.9 mm	27.0 mm
m_{miss}^2	$-0.00088{ m GeV}^2/{ m c}^4$	$-0.0015{ m GeV}^2/{ m c}^4$
$d\phi_{LKr-MUV3}$	3.29 rad	3.24 rad
E_{ν}	52.1 GeV	57.5 GeV
p_{μ^+}	25.25 GeV/c	18.74 GeV/c
p_{K^+}	77.3 GeV/c	76.2107 GeV/c
$E_{LKrintime}$	13.36 GeV	7.67 GeV
$E_{MUV1 in time}$	9.85 GeV	10.90 GeV
$E_{MUV2 in time}$	2.48 GeV	2.80 GeV
E_{μ^-}/E_{ν}	0.68	0.78
n _{KTAG}	28	17
z_{vtx}	161.2 m	157.7 m
x, y at MUV3 μ^-	(550, 770) mm	(330, 770) mm
x, y at MUV3 μ^+	(-330, -770) mm	(-550, -990) mm

Table: Features of the two signal candidates found in the signal region.

LBNE limitations: systematic uncertainties

• Oscillation parameters inferred from event spectra as a function of reconstructed neutrino energy:

$$N_{\nu_{\beta}}^{FD}(E_{\nu}^{reco}) = \Phi_{\nu_{\beta}}^{FD}(E_{\nu}^{true}) \times \epsilon^{FD}(E_{\nu}^{true}) \times \sigma_{\nu_{\beta}}^{FD}(E_{\nu}^{true}) \times S(E_{\nu}^{reco}, E_{\nu}^{true}) \times P(\nu_{\alpha} \to \nu_{\beta})(E_{\nu}^{true})$$

- Constrain systematic with ND that measures initial flux
- Heavily relay on models to predict near-to-far detector extrapolation: they see different fluxes due to
 - Oscillations
 - Acceptance
 - Solid angle coverage
- Heavily rely on $\sigma(E_v^{true})$ models and measurements
- Near and far detectors have energy scale uncertainty

Unambiguous matching of *v*-tag to *v*-int

- Time coincidence:
 - Next generation Si trackers will have $\sigma_t \sim 10 \text{ ps}$
 - Typically *v* detectors have $\sigma_t \sim 10$ ns
- \rightarrow 1000 v_{tag} per v_{int}
 - Angular coincidence:
 - Dominant contribution: resolution on v_{tag} is $\mathcal{O}(0.1)$ mrad for thickness of 0.5% X_0
 - ν beam divergence $\sim \frac{1}{\nu} \rightarrow \sim 10$ mrad for 15 GeV π^{\pm}
 - \rightarrow accidental matches reduced by a factor 10⁴

 $\rightarrow 0.1 \; v_{tag} \; \text{per} \; v_{int} \rightarrow$ unambiguous pairing possible in 90% of cases!

Adapted beamline for Tagging

- $\bullet~$ Main challenge: intense particle flux in neutrino beam line $\mathcal{O}(10^{18})$ particles/s
- Upcoming tracker capabilities: O(10¹²) particles/s
- Handles to **limit particle flux**:
 - slow extraction (few seconds instead of μ s)
 - narrow band (π momentum selection)
 - increase beam transverse size (around $0.1m^2$)
- Limitation: low *v* flux → **compensate with large FD** e.g. KM3NeT/ORCA (6.8 Mton)
- Win-win: tagging compensates for FD granularity, FD compensates for low v flux
- Case study: Tagged P2O (Protvino to KM3NeT/ORCA), L = 2595km, $E_v = 5$ GeV

Perspectives overview

- A lot is left to do before implementing the Tagging at a tagged experiment
 - Beamline simulation and design (narrow-band, slowly extracted beam)
 - Development in field of silicon trackers ongoing
- Building a full scale tagged experiment involves operating Silicon trackers in neutrino beamline
- Very harsh environment, particle rate $\sim 10^{12}$ particles/s
- Need performing detectors, specs similar to HL-LHC
- Time resolution is a crucial element: need to be able to separate the beam particles
- \rightarrow study the timing performances of Silicon detectors and understand the elements that affect their time resolution.

Feature	NA62 GTK	HL-LHC	Nu Tagging
Flux [MHz/mm ²]	2	$\mathcal{O}(10-100)$	O(10 - 100)
Hit Time Reso [ps]	130	<50	<20
Efficiency (%)	>99	>99	>99
Thickness (% of X_0)	< 0.5	<0.9	<0.5

Long Baseline Experiments (LBE)

- LBE suited to search for CP violation in the lepton sector and study oscillations
- Very intense hadron beams $(\pi^{\pm} \rightarrow \mu^{\pm} \overleftarrow{v}_{\mu})$ produced by impinging protons on target for ν beams production
- *v*s oscillate over $\mathcal{O}(10^3)$ km in matter
- Near detector: characterize initial *v* flux
- Far detector: very large neutrino detectors, characterize v flux after oscillation

- Oscillation studies limited by systematic uncertainties stemming from:
 - interaction models and x-section measurements
 - energy scale uncertainties
 - near-to-far detector extrapolation models
- Need a new method to refine our knowledge!

