First evidence for neutrino tagging

Bianca De Martino

On behalf of the NA62 collaboration

Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

IRN Neutrino 2023, Karlsruhe

2 [The NA62 experiment](#page-5-0)

- 3 [Proof of principle of Neutrino Tagging](#page-14-0)
	- [Analysis strategy](#page-15-0)
	- **o** [Offline selection](#page-18-0)
	- [Event yield background and signal](#page-23-0)
	- [Revealing signal region content](#page-27-0)

- [The NA62 experiment](#page-5-0)
- 3 [Proof of principle of Neutrino Tagging](#page-14-0)
	- [Analysis strategy](#page-15-0)
	- **Offline** selection
	- [Event yield background and signal](#page-23-0)
	- [Revealing signal region content](#page-27-0)

- Neutrino Tagging: new paradigm for accelerator based neutrino experiments
- Instrument a beam line with spectrometers \bullet
- \bullet Kinematically reconstruct each ν originating from a $\pi^+ \to \mu^+ \nu_\mu$ decay \to tagged ν
- **Associate** interacting v at Far Detector to its tagged v \bullet
- Main advantages: \bullet
	- \bullet energy resolution $\lt 1\%$ (VS 15% when measured with interaction), no energy scale
	- improved beam knowledge

Physics potential

- At a tagged Short Baseline Experiment:
	- **•** precise flux knowledge \rightarrow measure at 1% level ν_e x-sec and ν_u differential x-sec
	- tagged ν energy determined independently of its interaction \rightarrow refine interaction models
- These measurements would strongly improve the physics potential of upcoming LBE:
- At a tagged Long Baseline Experiment:
	- setup with a natural water Cherenkov detector (like KM3NeT/ORCA) would allow to **measure** δ_{CP} with unprecedented precision.
	- case study: P2O (Protvino to KM3NeT/ORCA)

2 [The NA62 experiment](#page-5-0)

3 [Proof of principle of Neutrino Tagging](#page-14-0)

- [Analysis strategy](#page-15-0)
- **Offline** selection
- [Event yield background and signal](#page-23-0)
- [Revealing signal region content](#page-27-0)

The NA62 experiment

NA62 features

- NA62 is a fixed-target experiment in the North Area of the SPS at CERN
- NA62's main purpose is the measurement of $\mathscr{B}r(K^+\to\pi^+\bar{w})$ (SM signal $\mathscr{B}r=(8.4\pm1.0)\cdot 10^{-11})$
- \bullet NA62's high intensity kaon beam at 75 GeV/c delivers a nominal rate of $\mathcal{O}(10^{12})K^+$ decays per year
- Beam composition: 6% $K^+,$ 70% $\pi^+,$ 23% p, 750MHz over 3s spills
- Can be exploited as miniature tagged experiment

Tagging proof of principle at NA62

Exploit K^+ main decay channel: $K^+ \rightarrow \mu^+ + \nu_\mu$

- K^+ reconstructed by beam spectrometer
- μ^+ reconstructed by downstream spectrometer
- \bullet *v* interacting in the EM calorimeter (20ton LKr)
- Interaction channel: CC-DIS: $v \rightarrow$ shower + $\mu^ \bullet$
- Exploit μ^+ , shower and μ^- for triggering strategy

- GigaTracKer (GTK): silicon pixel spectrometer, reconstructs time and 4-momentum of incoming beam particles
- 130 ps hit time resolution
- $\sigma_p/p = 0.2\%, \sigma_{\theta} = 16 \text{ mrad}$
- \bullet 60.8 \times 27 mm silicon sensor

STRAW: straw tube spectrometer that reconstructs the properties of charged particles produced in K decays

Liquid Krypton calorimeter (LKr): electromagnetic calorimeter filled with about 9000 l of liquid Krypton at 120K

MUon Veto (MUV) 1 and 2: 66 ton hadron calorimeter

MUon Veto 3 (MUV3): 50 mm thick scintillator tiles, placed behind LKr, MUV1 and 2, and an iron wall, used for muon identification

[The NA62 experiment](#page-5-0)

3 [Proof of principle of Neutrino Tagging](#page-14-0)

- [Analysis strategy](#page-15-0)
- **o** [Offline selection](#page-18-0)
- [Event yield background and signal](#page-23-0)
- [Revealing signal region content](#page-27-0)

Analysis strategy

Analysis strategy

- Backgrounds assessed with data driven method on side bands; 2 background sources:
	- Overlaid $K \mu v$: $K \to \mu v$ with extra in-time activity \to studied in side bands of $|d_{LKrv}|$
	- Mis-reconstructed kaon decays \rightarrow studied in side bands of $m^2_{\rm miss}$.

Bianca De Martino **[First evidence for neutrino tagging](#page-0-0) First evidence for neutrino tagging 7/18**

Analysis strategy

- Data sample: 5 \cdot 10 12 effective K^+ decays, collected in 2022
- Expected event rate: \bullet

$$
N_{\text{signal}}^{\text{exp}} = N_{K^+} \cdot \mathcal{B}(K^+ \to \mu^+ \nu_\mu) \cdot P_{\text{int,LKr}} \cdot \epsilon_{\text{signal}}
$$

Use $K^+ \rightarrow \mu^+ \nu_\mu$ (no ν interaction) decays as normalization sample:

$$
N_{K^{+}} = \frac{N_{\text{norm}}}{\epsilon_{\text{norm}} \cdot \mathcal{B}(K^{+} \to \mu^{+} v_{\mu})}
$$

$$
N_{\text{signal}}^{\exp} = N_{\text{norm}} \cdot \frac{\epsilon_{\text{signal}}}{\epsilon_{\text{norm}}} \cdot P_{\text{int,LKr}}
$$

- As many common selection and trigger criteria as possible to signal and \bullet normalization
- Signal and normalization common efficiency terms cancel in the ratio \bullet
- Signal efficiency estimated thanks to a MC sample (GENIE)

Offline selection

Common selection - signal and normalization

- Single positively charged track matched to LKr, MUV1, MUV2 and MUV3 candidates
- μ^+ particle identification
- \bullet photon rejection
- $\bullet\;\;v$ extrapolated position inside LKr acceptance

interaction offline selection

- \bullet Step 1: *v* interaction associated to activity in LKr, MUV1, MUV2, MUV3 in time and space
- Step 2: Extra activity rejection
- Step 3: Energy requirements
- Step 4: Interaction topology

Interaction topology

Interaction topology

0.02 0.04 0.06 0.08

Bianca De Martino **[First evidence for neutrino tagging](#page-0-0)** 11/18

Signal and background yields

Variables for signal yield computation

•
$$
P_{int,LKr} = (6.0 \pm 0.1_{syst}) \cdot 10^{-11}
$$

•
$$
N_{norm} = (1.49 \pm 0.02_{syst}) \cdot 10^{11}
$$
 from $K \mu v$ event yield

•
$$
\frac{\epsilon_{signal}}{\epsilon_{norm}} = \epsilon_{signal \text{ only}}^{\text{trig}} \cdot \epsilon_{signal \text{ only}}^{\text{interaction}} = (2.55 \pm 0.15_{stat} \pm 0.04_{syst})\%
$$

$$
N_{\text{signal}}^{\text{exp}} = 0.228 \pm 0.014_{\text{stat}} \pm 0.011_{\text{syst}}
$$

exp

Summary

In 2022 data sample (5 \cdot 10 12 K^{+} decays):

 $N_{\text{signal}}^{exp} = 0.228 \pm 0.014_{stat} \pm 0.011_{syst},$

$$
N_{bkg}^{exp}(Mis-recoK^{+}) = 0.0014 \pm 0.0007_{stat} \pm 0.0002_{syst},
$$

$$
N_{bkg}^{exp}(OVK \mu v) = 0.04 \pm 0.02_{stat} \pm 0.01_{syst}.
$$

Signal-to-noise: 5.5

Probability for total expected event yield $N_{\text{events}}^{\text{exp}} = 0.2694$

- for 0 data events $p = 0.7638$
- for 1 data event $p = 0.2058$
- for 2 data events $p = 0.0277$.

Results approved for unblinding by the NA62 collaboration

Revealing signal region content

Two events are found in signal region‼

Corresponds to probability p = 0.0277 for total expected event yield $N_{events}^{exp}=0.2694$

Event Display - Event A

 $p_{\mu^+} = 25.25 \text{ GeV/c}$

Event Display - Event B

- $p_{\mu^+} = 18.74 \text{ GeV/c}$
- $E_v = 57.5 \text{ GeV}$
- $p_{K^+} = 76.2 \text{ GeV/c}$

Conclusions

- NA62 experiment has been exploited as a miniature tagged experiment to perform proof of principle of the neutrino tagging technique
- Reconstruct $K^+ \rightarrow \mu^+ \nu_\mu$ decay with all particles detected
- Blind analysis performed, expected $N^{exp}_{signal} = 0.228 \pm 0.014_{stat} \pm 0.011_{syst}$ signal events \bullet
- \bullet Signal-to-noise ratio 5.5
- \bullet 2 events found in signal region upon opening the box
- First tagged neutrino candidates in history!
- Achieved crucial first step towards establishment of tagging as effective paradigm \bullet

Thank you for your attention!

Signal yield

$$
N_{\text{signal}}^{exp} = N_{K\mu\nu} \cdot A_{K\mu\nu*}^{int} \cdot \epsilon_{FS}^{RU} \cdot \epsilon_{FS}^{sel} \cdot \epsilon_{MOQX}^{sel} \cdot \epsilon_{HLT}^{sel} \cdot P_{int,LKr}
$$

= **0.228 ± 0.014**_{stat} ± **0.011**_{syst}

(1)

Signal candidates properties

Table: Features of the two signal candidates found in the signal region.

Bianca De Martino **[First evidence for neutrino tagging](#page-0-0)** 20 / 18

LBNE limitations: systematic uncertainties

Oscillation parameters inferred from event spectra as a function of reconstructed neutrino energy:

$$
N_{v_\beta}^{FD}(E_v^{reco}) = \Phi_{v_\beta}^{FD}(E_v^{true}) \times \epsilon^{FD}(E_v^{true}) \times \sigma_{v_\beta}^{FD}(E_v^{true}) \times S(E_v^{reco}, E_v^{true}) \times P(v_\alpha \to v_\beta)(E_v^{true})
$$

- Constrain systematic with ND that measures initial flux
- Heavily relay on models to predict near-to-far detector extrapolation: they see different fluxes due to
	- Oscillations
	- Acceptance
	- Solid angle coverage
- Heavily rely on $\sigma(E_{\nu}^{true})$ models and measurements
- Near and far detectors have energy scale uncertainty

Unambiguous matching of ν -tag to ν -int

- **•** Time coincidence:
	- Next generation Si trackers will have $\sigma_t \sim 10 \text{ ps}$
	- Typically *v* detectors have $σ_t$ ~ 10 ns
- \rightarrow 1000 v_{tag} per v_{int}
	- Angular coincidence:
		- Dominant contribution: resolution on v_{tag} is $\mathcal{O}(0.1)$ mrad for thickness of 0.5% X_0
		- $\frac{1}{\gamma}$ ν beam divergence ∼ $\frac{1}{\gamma}$ → ∼ 10 mrad for 15 GeV π^{\pm}
		- $\bullet \rightarrow$ accidental matches reduced by a factor 10^4

 \rightarrow 0.1 v_{tar} per $v_{\text{int}} \rightarrow$ unambiguous pairing possible in 90% of cases!

Adapted beamline for Tagging

- Main challenge: intense particle flux in neutrino beam line $\mathcal{O}(10^{18})$ particles/s \bullet
- \bullet Upcoming tracker capabilities: $\mathcal{O}(10^{12})$ particles/s
- Handles to limit particle flux:
	- \bullet slow extraction (few seconds instead of μ s)
	- narrow band (π momentum selection)
	- increase beam transverse size (around $0.1m^2$)
- \bullet Limitation: low ν flux \rightarrow compensate with large FD e.g. KM3NeT/ORCA (6.8 Mton)
- Win-win: tagging compensates for FD granularity, FD compensates for low ν flux ۰
- Case study: Tagged P2O (Protvino to KM3NeT/ORCA), $L = 2595$ km, $E_v = 5$ GeV \bullet

Perspectives overview

- A lot is left to do before implementing the Tagging at a tagged experiment
	- Beamline simulation and design (narrow-band, slowly extracted beam)
	- Development in field of silicon trackers ongoing
- Building a full scale tagged experiment involves operating Silicon trackers in neutrino beamline
- \bullet Very harsh environment, particle rate ~ 10¹² particles/s
- Need performing detectors, specs similar to HL-LHC \bullet
- \bullet Time resolution is a crucial element: need to be able to separate the beam particles
- → study the timing performances of Silicon detectors and understand the elements that affect their time resolution. \bullet

Long Baseline Experiments (LBE)

- LBE suited to search for CP violation in the lepton sector and study oscillations
- Very intense hadron beams $(\pi^{\pm}\to\mu^{\pm}\stackrel{\leftrightarrow}{\nu_{\mu}})$ produced by impinging protons on target for ν beams production
- vs oscillate over $\mathcal{O}(10^3)$ km in matter
- \bullet Near detector: characterize initial ν flux
- \bullet Far detector: very large neutrino detectors, characterize ν flux after oscillation

- \bullet Oscillation studies limited by systematic uncertainties stemming from:
	- interaction models and x-section measurements
	- energy scale uncertainties
	- near-to-far detector extrapolation models
- Need a new method to refine our knowledge!

