Results from the

oscillation analysis

 \mathbf{Z}

Clarence Wret on behalf of SK+T2K joint analysis

> IRN Neutrino 2023, Karlsruhe November 27 2023

Outline

- Brief introduction to neutrino oscillations
- The T2K and SK experiments
- Why a joint analysis?
- Results
- The future

n

 $|\nu_i\rangle = \sum U_{\alpha i} |\nu_{\alpha}\rangle$

• Neutrino flavour and mass eigenstates are separated

 Neutrinos propagate in mass eigenstates, but are born and detected in the flavour eigenstate via weak interaction

• Results in oscillations of the detected flavour eigenstates

Clarence Wret

 Express probability to detect a neutrino with flavour α and energy E, as flavour β after it's travelled distance L

$$P(\nu_{\alpha} \to \nu_{\beta}) = \delta_{\alpha\beta} - 4\sum_{i>j} Re\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right)\sin^{2}(\Delta m_{ij}^{2}\frac{L}{4E})$$

$$\Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2} + (-)2\sum_{i>j} Im\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right)\sin(\Delta m_{ij}^{2}\frac{L}{2E})$$

 Express probability to detect a neutrino with flavour α and energy E, as flavour β after it's travelled distance L

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \delta_{\alpha\beta} - 4 \sum_{i>j} Re \left(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*} \right) \sin^{2}(\Delta m_{ij}^{2} \frac{L}{4E})$$

$$\Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2} + (-)2 \sum_{i>j} Im \left(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*} \right) \left(\sin(\Delta m_{ij}^{2} \frac{L}{2E}) \right)$$

Mixing angles
Mass² difference between eigenstate *i* and *j*

- Design of a neutrino oscillation experiment focusses on L/E
 - Determines sensitivity to mass squared splitting and mixing angles
 - Optimise L/E to match appearance/disappearance
 - Resolve neutrino energy adequately

• Express probability to detect a neutrino with flavour α and energy *E*, as flavour β after it's travelled distance *L*

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \delta_{\alpha\beta} - 4\sum_{i>j} Re\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right) \sin^{2}(\Delta m_{ij}^{2}\frac{L}{4E})$$

$$\Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2} + (-)2\sum_{i>j} Im\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right) \sin(\Delta m_{ij}^{2}\frac{L}{2E})$$
Dominant effect
from sin² term
leads to a unknown
mass hierarchy:
$$\Delta m_{32}^{2} > 0?$$
sin term resolves mass
hierarchy, and also
enters through matter
effects
Know $\Delta m_{21}^{2} > 0$
from SNO experiment

Express probability to detect a neutrino with flavour α and energy E, as flavour β after it's travelled distance L

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \delta_{\alpha\beta} - 4 \sum_{i>j} Re\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right) \sin^{2}(\Delta m_{ij}^{2}\frac{L}{4E})$$

$$\Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2} + (-)2 \sum_{i>j} Im\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right) \sin(\Delta m_{ij}^{2}\frac{L}{2E})$$
Measure differences in P($\nu_{\mu} \rightarrow \nu_{e}$) and P(anti- $\nu_{\mu} \rightarrow$ anti- ν_{e})
 \rightarrow left with single term $\Delta_{ij} \equiv \Delta m_{ij}^{2}L/4E$

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) - P(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}) = -16J_{\alpha\beta} \sin \Delta_{12} \sin \Delta_{23} \sin \Delta_{31}$$
Sensitive to
CP violating phase $J \equiv s_{12}c_{12}s_{23}c_{23}s_{13}c_{13}^{2} \sin \delta$
Sensitive to
Munokawa et al, Prog. Part. Nucl. Phys. 60, 338

 The most general form of mixing matrix is seldom used; instead separate into three mixing matrices
 <sub>s_{ij} = sinθ_{ij}

</sub>

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Atomspheric or "2,3" sector Reactor, or "1,3" sector Solar, or "1,2" sector

 The most general form of mixing matrix is seldom used; instead separate into three mixing matrices

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$Atomspheric \text{ or } Reactor, \text{ or } ``1,3" \text{ sector } Solar, \text{ or } ``1,2" \\ \text{ sector } Solar, \text{ or } ``1,2" \\ \text{ sector } Solar, \text{ or } ``1,2" \\ \text{ sector } Long \text{ baseline experiments } (K2K, T2K, NOvA, MINOS, DUNE, HK), \\ atmospheric experiments (SK, IceCube) \\ L/E \sim 400-500 \text{ km/GeV} \end{pmatrix}$$

Clarence Wret

 The most general form of mixing matrix is seldom used; instead separate into three mixing matrices

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{bmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Atomspheric or "2,3" sector
Reactor experiments (Dava Bay RENO Double Chooz)

Reactor experiments (Daya Bay, RENO, Double Chooz) <u>L/E ~ 1km/MeV</u>

 The most general form of mixing matrix is seldom used; instead separate into three mixing matrices
 s_{ii} = sinθ_{ii}

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Atomspheric or "2,3" sector Reactor, or "1,3" sector Solar, or "1,2" sector

Solar experiments (SNO, SK) long baseline reactor experiments (KamLAND, JUNO) L/E > 100km/MeV

From MIT

The T2K and SK experiments

The "pit" 280m after the target station, housing ND280, INGRID, and other near detectors

The SK detector: T2K's far detector and conducts its own atmospheric neutrino analysis

Clarence Wret

The SK detector

- 50kt water Cherenkov detector, 2.7 km water equivalent overburden
- Running since 1996, with latest upgrade to SK-V in 2018 relevant to this analysis (now doped with Gd!)
 - 2.5° off-axis with similar flux to ND280
- 11,146 20" PMTs in ID, 1,885 8" PMTs in OD 40% PMT coverage

Why a joint analysis?

• T2K has degeneracies with δ_{CP} and mass ordering

Clarence Wret

• T2K has degeneracies with δ_{CP} and mass ordering

Why a joint analysis • But, T2K has good sensitivity to mixing angle $sin^2\theta_{23}$

Why a joint analysis

- Both experiments are sensitive to δ_{CP} from v_{e} appearance
- T2K is not sensitive to mass ordering, but good constraint on δ_{CP}
- SK has good constraint on mass ordering, but barely on δ_{CP} : sees an average effect, due to energy resolution
 - T2K's $sin^2\theta_{23}$ constraint helps reducing degeneracies in SK

Why a joint analysis

- Both experiments are sensitive to δ_{CP} from v_{e} appearance
- T2K is not sensitive to mass ordering, but good constraint on δ_{CP}
- SK has good constraint on mass ordering, but barely on δ_{CP} : sees an average effect, due to energy resolution
 - T2K's sin² θ_{23} constraint helps reducing degeneracies in SK

Why a joint analysis

 SK sees multiple neutrino sources: here we use atmospheric neutrinos, and beam neutrinos from T2K

- Same detector, sometimes similar selections and fluxes
 - Unify systematics and selections where possible
 - Improved oscillation constraints through sharing systematics, and using high-statistics SK samples to inform T2K samples
 - Utilise high-statistics near-detector samples from T2K to constrain aspects of atmospheric selections: expose tensions
- Beam+atmospheric analysis may be required for Hyper-Kamiokande competitiveness with DUNE (depending on mass ordering and δ_{CP})

Clarence Wret

[Eur.Phys.J.C 83 (2023) 9, 782]

- T2K's 2020 analysis as basis
 - 5 samples: **single-ring** separated by lepton flavour, Michel electron, and beam running mode

Selections

POT: 19.7x10²⁰ FHC, 16.3x10²⁰ RHC Lepton angle [deg] angle [deg] 150 • Data Best fit 120 Best fit epton : 90 100 50 0.0 1000 1200 0.5 200 Reconstructed v-energy [GeV] Lepton momentum [MeV/c] + Data Lepton angle [deg] angle [deg 150 150 Best f Best fit 120 120 epton 200 400 600 +Data Lepton mo tructed v-energy [GeV] nole [deo] · Data Best fit 0.0 200 400 600 800 1000 1200 Clarence Wret

Lepton momentum [MeV/c]

[PTEP 2019 (2019) 5, 053F01]

- SK's 2019 analysis as basis
 - **18 samples**, separated by lepton flavour, event topology, and visible energy
 - SK IV, before Gd-doping
 - 3244.4 days of atmospheric neutrino data

Shared systematics

- Utilise interaction model expertise from both experiments: unify low energy model and CCQE
- Apply T2K ND for relevant atmospheric selections

• Shared det. systematics

 No shared flux systematics

	-				
	Low-energy sub-GeV atm + beam	High-energy multi-GeV atm			
	T2K model with N correlated in low-E/high	D280 constraint, E (except for high-Q²)			
CCQE	high-Q ² params w/ND280	high-Q ² params w/o ND			
	add v_e/v_μ ratio unc. (CRPA)				
2p2h	T2K model w/ND280	SK model (100% error) + T2K-style shape			
Resonant	T2K model w/ND280 + new pion momentum dial + NC1π0 uncertainties	SK model for 3 dials common with T2K, use more recent larger T2K priors			
DIS	T2K model w/ND280	SK model			
ντ	SK model (25% norm for other systematics checked that we	on top of other syst) have no numerically unstable values			
FSI	T2K model w/ND280	T2K model w/o ND280 should be mostly same as SK model			
SI	T2K model, correlated in low-E/high-E only applied to FC and PC for atm, PN not applied to atm				

Fake-data studies

- T2K uses "fake data" to gauge impact of missing interaction model features
 - How would a bias manifest if model X is true nature, but we fit it with our model
- Set "data" to be a model, redo near-detector analysis, propagate constraints from near detector to far detector, extract bias on oscillation parameters
- 14 different models tested: study impact on δ_{CP} and J, sin^2\theta_{23}, mass ordering and $\Delta m^2{}_{32}$ constraint
- Largest impact from Continuum Random Phase Approximation (CRPA) and the multiplicity of multi-pion events
 - Latest T2K analysis has uncertainties related to this, which we did not include in our analysis; hence a large impact
 - Smearing of Δm_{32}^2 of 3.6x10⁻⁵ eV²: larger than overall syst uncertainty on Δm_{32}^2

Clarence Wret

CRPA: [Phys. Rev. C 65, 025501], RPA: [Phys. Rev. C 83, 045501] 28

Results

Results

- Four analysis groups:
 - Two Bayesian MCMC analyses
 - One simplified frequentist analysis
 - SK's official frequentist analysis
- Here presenting results from the **two Bayesian MCMC** analyses, using different implementations

Binned	Event by event / Binned
$ \begin{array}{ c c c c c } (E_{\rm rec},\theta) \mbox{ for } \mu\mbox{-like samples} \\ (p,\theta) \mbox{ for } e\mbox{-like samples} \end{array} $	$(E_{\rm rec})$ for μ -like samples $(E_{\rm rec}, \theta)$ for <i>e</i> -like samples
Gaussian approximation (Sequential fit)	Full likelihood (Simultaneous fit)
Semi-analytic averaging	Down-sampling finer to coarser grid
Average density + deviations	Average density
	$\begin{tabular}{ c c c } \hline Binned \\ \hline & (E_{\rm rec}, \theta) \mbox{ for μ-like samples} \\ \hline & (p, \theta) \mbox{ for e-like samples} \\ \hline & Gaussian \mbox{ approximation} \\ \hline & (Sequential \mbox{ fit}) \\ \hline & Semi-analytic \mbox{ averaging} \\ \hline & Average \mbox{ density} + \mbox{ deviations} \\ \hline \end{tabular}$

Reactor constraint on $\sin^2\theta_{13}$:

0.0218±0.0007 (PDG 2019)

Results, Jarlskog invariant

- >2 σ exclusion of J=0 in normal ordering
- Nearly 3σ exclusion of J=0 in inverted ordering
- Similar (but weaker) exclusion for Analysis II

Results, CP-violating phase

- Similar results for δ_{CP} phase constraint
- $\delta_{CP} = \pi$ is just included in 2σ for normal ordering and a prior flat in sin δ_{CP}
- Inverted ordering nearly excludes $\delta_{\text{CP}}\text{=}0,\,\pi$ at 3σ for both prior choices

Summary t	able	for (CPV	statem	ients
-----------	------	-------	-----	--------	-------

Analysis	Variable	Prior	1σ	90%	2σ	3σ
	8	Flat in $\delta_{\scriptscriptstyle \mathrm{CP}}$	\checkmark	\checkmark	\checkmark	×
Analysis 1	$0_{\rm CP}$	Flat in $\sin \delta_{\rm CP}$	\checkmark	$\checkmark(\times)$	×	×
Allalysis 1	$J_{\scriptscriptstyle m CP}$	Flat in $\delta_{\rm CP}$	\checkmark	\checkmark	\checkmark	×
		Flat in $\sin \delta_{\rm CP}$	\checkmark	\checkmark	\checkmark	×
	$\delta_{ m CP}$	Flat in $\delta_{\rm CP}$	\checkmark	\checkmark	\checkmark	×
Analysis 2		Flat in $\sin \delta_{\rm CP}$	\checkmark	$\checkmark(\times)$	×	×
Analysis 2	$J_{ m CP}$	Flat in $\delta_{\rm CP}$	\checkmark	\checkmark	\checkmark	×
		Flat in $\sin \delta_{\rm CP}$	\checkmark	\checkmark	$\checkmark(\times)$	×

✓: excluded X: not excluded

 \checkmark (\times): excluded but may not be robust against the possible bias from an out-of-model effect

- 90% to 2 σ exclusion of J=0 and δ_{CP} =0, π
- Dependent on prior choice, dependent on variable
- Analysis I and II are (mostly) consistent

Results, atmospheric

- Constraint on Δm² is weaker than T2K result due to fake-data studies
- Will improve with updated interaction modelling
- Normal ordering: weak upper octant preference
- Inverted ordering: stronger upper octant preference

Results, Bayes factors Express octant and ordering preferences as Bayes factors (ratios of posterior probabilities)

	T2K+SK	
$\sin^2\theta_{23} < 0.5$	$\sin^2\theta_{23} > 0.5$	Line total
0.367	0.533	0.900
0.022	0.078	0.100
0.389	0.611	1.000
	8.98 ± 0.06	
	1.57	$\overline{}$
	$\sin^2 \theta_{23} < 0.5$ 0.367 0.022 0.389	$T2K+SK$ $\sin^2 \theta_{23} < 0.5 \sin^2 \theta_{23} > 0.5$ $0.367 0.533$ $0.022 0.078$ $0.389 0.611$ 8.98 ± 0.06 1.57

 Moderate preference for normal ordering, weak preference for upper octant

- Joint analysis has little octant preference

Clarence Wret

Results, p-values Construct posterior predictive distributions for all T2K and SK samples

- Can then construct Bayesian p-values for all T2K and SK samples
- Compatible p-values between analysis I and II, and with T2K 2020 results
 - p=0.254 (shape), p=0.202 (norm)

Future

- Writing short paper on oscillation analysis, expect soon!
- Long paper on method and model developments, including full oscillation result
- Two complementary frequentist oscillation analyses underway, one being the official SK atmospheric analysis
 - Will do Feldman-Cousins confidence intervals, and CL_s
- Interest from both collaborations to pursue another analysis
 - Have begun studying impact of more SK atmospheric data (SK I-III and later) and T2K beam data (still have another 1.7x to collect!)
 - Scope to deeper investigate flux correlations, develop neardetector selections targeted at atmospheric selections
 - ... your ideas here!

Summary

- Official simultaneous analysis between SK atmospheric and T2K beam neutrinos complete
 - First analysis to deep-dive into shared systematics!
- Numerous benefits: lifting oscillation parameter degeneracies, correlating systematics, sharing knowledge
 - A necessary exercise for future Hyper-Kamiokande experiment
- Teasing on 2σ exclusion of J=0; exclusion of CP violation between 90% and 2σ
- Preference for normal ordering, weak preference for upper octant
- Stay tuned for papers!

Backups

The T2K near detectors

- Fluxes: v_{μ} and anti- v_{μ} dominated with different E_{ν}
 - ND280: 2.5° off-axis, 0.6 GeV narrow band used in OA
 - INGRID: on-axis, 1.3 GeV wide band used for monitoring

- Multiple targets in INGRID and ND280: C₈H₈, H₂O, Ar, Pb, Fe
- More detectors rolling into the ND280 pit, e.g. WAGASCI/BabyMIND, NINJA, proton and water modules

Clarence Wret

The ND280 near detector

- Oscillation analysis utilises the FGD+TPC selections
 - Use FGD1 (CH) and FGD2 (CH, H_2O) to constrain neutrino flux and interaction cross-section
 - Water target important, as it's the target in SK

- Sign selection, ~8% MIP resolution in TPC; 0.2% μ /e confusion
 - Can constrain wrong-sign backgrounds in-situ

Flux at T2K SK

The SK detector

- Excellent μ/e separation: <1% mis-assign e as μ
- Reconstruction simultaneously fits all PMT hits, inspired by MiniBooNE

- Runs a multi-Cherenkov ring reconstruction, down-selects to single ring, and runs dedicated single ring fitter
 - Select number of rings and delayed Michel electrons
 - This analysis selects single ring events

Clarence Wret

The SK detector

- Cherenkov ring shape (sharp vs fuzzy) chiefly determines μ vs e
- Additionally select on delayed Michel electrons

1Re Ode

 $1R\mu < 2de$

MoU

- SK and T2K signed memorandum of understanding (MoU) in late 2019
- Pursue joint oscillation analysis of SK atmospheric and T2K beam neutrinos
- Official effort from both experiments, with bi-weekly meetings and active consulting of experts
- MoU set out to use existing experiment techniques but also modify analyses under supervision of experts when necessary
- The analysis is **not just a statistical combination**, but leverages strengths of both experiments, e.g.
 - Use T2K's near-detector to constrain neutrino interaction model for SK atmospheric selections
 - Share parts of the interaction model where appropriate and feasible
 - Unify reconstruction and simulation of SK's beam and atmospheric neutrinos
 - Use high statistics SK atm. samples to understand features in T2K selections, e.g. 1Re1de and SubGeV e-like 1de
 - Develop earth model for neutrino oscillations

- And many more!

SK running periods From L. Wan@NEUTRINO 2022 **Gd** concentration at SK-VI: 0.011% in weight. 2018 2019 2020 1996 2002 2006 2008 2022 SK-II SK-III SK-V SK-VI SK-I SK-IV "SK-Gd" Aug-2002 SK-IV SK-II SK-V Pure water **Gd-loaded water** 6,511 days live-time 583.3 days + the future...

Figure 117: $\sin^2 \theta_{23}$ from real data fit with (blue shaded) and without (yellow shaded) reactor constraint applied, for normal (left), inverted (center) and both (right) orderings.

Bayes factors for each experiment

	m T2K+SK			T2K			m SK~(+ND)		
	$\sin^2\theta_{23} < 0.5$	$\sin^2\theta_{23} > 0.5$	Line total	$\sin^2\theta_{23} < 0.5$	$\sin^2\theta_{23} > 0.5$	Line total	$\sin^2\theta_{23} < 0.5$	$\sin^2\theta_{23} > 0.5$	Line total
Normal ordering	0.367	0.533	0.900	0.190	0.642	0.832	0.468	0.186	0.654
Inverted ordering	0.022	0.078	0.100	0.025	0.142	0.168	0.214	0.132	0.346
Column total	0.389	0.611	1.000	0.215	0.785	1.000	0.682	0.318	1.000
MO Bayes factor $B(NO/IO)$	8.98 ± 0.06		4.96 ± 0.02			1.886 ± 0.008			
Octant Bayes factor $B(\text{UO/LO})$	1.57		3.65			0.47			

FDS lie	st
	Model component
Martini 2p2h	2p2h
ND280 data-driven pion kinematics	$CC1\pi$
$\rm CC0\pi$ non-QE alteration	$CC0\pi$
Removal energy	Nuclear Model
Axial form factors	CCQE
Pion SI bug fix	$CC1\pi$, $CCn\pi$
LFG	Nuclear model
CRPA	Nuclear model
Pion multiplicity	$\mathrm{CC}n\pi$
Energy-dependent $\sigma_{\nu_e}/\sigma_{\nu_{\mu}}$	$\sigma_{ u_e}/\sigma_{ u_\mu}$
Xsec-only fit	Fit
Atmospheric down-going $CC1\pi$	$CC1\pi$
Atmospheric full-zenith $CC1\pi$	$CC1\pi$
No-migration energy scale fit	\mathbf{Fit}

Example of the fake data fit results that showed large biases

Gaussian smearing applied on data

*Here $\Delta \chi^2 = 1,4,9$ lines are shown but it does not guarantee the correct coverage

• We evaluate the possible bias in the oscillation parameter measurement due to the possible mis-modeling.

- Generate a simulated data set using an alternative model and fit it with our nominal model.
- If there is a significant bias, we update our model with additional systematics or apply smearing on the oscillation parameter.

• The second step of the robustness test is done after the data fit.

- We take the difference between nominal fit and simulated data fit results.
- Impose this shift to the data fit to see if the bias in the interval edges can change our conclusion.
- \bullet This effect is tested on $\delta_{\rm CP}$ and Jarlskog invariant (relevant to our CP statement).

*Here $\Lambda v^2 = 1.4.9$ lines are shown but it does not guarantee the correct coverage

• We also tested whether it can change our conclusion on the significance of CP violation.

- \bullet The size of the shift in the credible interval edges of $\delta_{
 m CP}$ and Jarlskog invariant was checked.
- None of them caused a shift of 2σ interval edges over the value of interest ($\delta_{CP} = 0, \pi, J_{CP} = 0$)

• Therefore it does not change our conclusion on CP violation around 2σ .

Faka data	Poforonco	2σ interval ratio to Nominal $R_x^{2\sigma}$			Bias in the middle of 2σ interval $B_x^{\text{syst.}}$			Mass ordering	
Fake data	Reference	$\delta_{\rm CP}$	Δm^2_{32}	$\sin^2 \theta_{23}$	δ_{CP}	Δm^2_{32}	$\sin^2 \theta_{23}$	Bayes factor ratio	
Martini2p2h	Scaled Asiomv	0.972	0.989	0.982	-1.29%	-8.03%	-3.89%	1.09	
DataDrivenPion	Normal Asimov	1.02	1	0.964	0.501%	18.4%	-4.57%	1.01	
nonQECC0pi	Normal Asimov	0.948	0.904	0.995	-5.57%	-20.3%	-10.6%	1.00	
Eb15MeV	Normal Asimov	1.01	1	1	1.49%	-22.5%	3.54%	0.96	
Upper3CompCCQE	Scaled Asiomv	0.998	0.995	0.978	-1.22%	7.49%	-0.944%	0.97	
PionSI	Normal Asimov	0.997	1.02	0.985	2.05%	44.8%	-0.91%	1.00	
LFG	Normal Asimov	0.969	0.988	0.926	2%	38.4%	-4.76%	1.12	
CRPA	Normal Asimov	0.991	0.969	1.02	-4.85%	154%	-10.5%	0.99	
XSecOnly	Normal Asimov	1.01	0.989	0.991	5.02%	17%	-2.54%	1.10	
MultiPion	Normal Asimov	1	0.999	1.02	2.35%	-63.5%	-4.53%	0.90	
NueNumu	Scaled Asiomv	0.988	0.994	0.992	0.0401%	-5.82%	1.72%	1.08	
CC1PiDownGoing	Normal Asimov	0.963	0.998	1	15.2%	-11%	8.45%	1.18	
$\rm CC1PiFullZenith$	Normal Asimov	0.961	0.998	1.01	-9.5%	-1.25%	12.8%	0.99	
NoMigration	Normal Asimov	1.02	0.992	1.01	4.59%	-3.09%	0.943%	1.00	

	δ_{CP}	Δm^2_{32}	$\sin^2 \theta_{23}$
Middle of the 1σ interval	-1.622	0.002517	0.5241
1σ interval size: $1\sigma_{tot.}$	1.036	5.422 e- 05	0.04426
1σ stat-only interval size: $1\sigma_{\text{stat.}}$	0.8142	4.983e-05	0.03771
$1\sigma_{\text{syst.}} = \sqrt{(1\sigma_{\text{tot.}})^2 - (1\sigma_{\text{stat.}})^2}$	0.6403	2.138e-05	0.02318
Middle of the 2σ interval	-1.639	0.002517	0.5185
2σ interval size: $2\sigma_{\text{tot.}}$	1.773	0.0001085	0.07194
2σ stat-only interval size: $2\sigma_{\text{stat.}}$	1.48	9.953e-05	0.06269
$2\sigma_{\text{syst.}} = \sqrt{(2\sigma_{\text{tot.}})^2 - (2\sigma_{\text{stat.}})^2}$	0.9749	4.33e-05	0.03528
	Middle of the 1σ interval 1σ interval size: $1\sigma_{tot.}$ 1σ stat-only interval size: $1\sigma_{stat.}$ $1\sigma_{syst.} = \sqrt{(1\sigma_{tot.})^2 - (1\sigma_{stat.})^2}$ Middle of the 2σ interval 2σ interval size: $2\sigma_{tot.}$ 2σ stat-only interval size: $2\sigma_{stat.}$ $2\sigma_{syst.} = \sqrt{(2\sigma_{tot.})^2 - (2\sigma_{stat.})^2}$	$\delta_{\rm CP}$ Middle of the 1σ interval-1.622 1σ interval size: $1\sigma_{\rm tot.}$ 1.036 1σ stat-only interval size: $1\sigma_{\rm stat.}$ 0.8142 $1\sigma_{\rm syst.} = \sqrt{(1\sigma_{\rm tot.})^2 - (1\sigma_{\rm stat.})^2}$ 0.6403Middle of the 2σ interval-1.639 2σ interval size: $2\sigma_{\rm tot.}$ 1.773 2σ stat-only interval size: $2\sigma_{\rm stat.}$ 1.48 $2\sigma_{\rm syst.} = \sqrt{(2\sigma_{\rm tot.})^2 - (2\sigma_{\rm stat.})^2}$ 0.9749	$\delta_{\rm CP}$ Δm_{32}^2 Middle of the 1 σ interval-1.6220.002517 1σ interval size: $1\sigma_{\rm tot.}$ 1.0365.422e-05 1σ stat-only interval size: $1\sigma_{\rm stat.}$ 0.81424.983e-05 $1\sigma_{\rm syst.} = \sqrt{(1\sigma_{\rm tot.})^2 - (1\sigma_{\rm stat.})^2}$ 0.64032.138e-05Middle of the 2σ interval-1.6390.002517 2σ interval size: $2\sigma_{\rm tot.}$ 1.7730.0001085 2σ stat-only interval size: $2\sigma_{\rm stat.}$ 1.489.953e-05 $2\sigma_{\rm syst.} = \sqrt{(2\sigma_{\rm tot.})^2 - (2\sigma_{\rm stat.})^2}$ 0.97494.33e-05

Highest posterior probability

SK+T2K preliminary, Analysis 1

Normal ordering	$\sin^2 heta_{13}$	$\delta_{\scriptscriptstyle ext{CP}}$	$\Delta m^2_{32} \; [10^{-3} \; {\rm eV^2}]$	$\sin^2 heta_{23}$	$J_{\rm CP}$
Most probable value	0.0219	-1.872	2.511	0.549	-0.033
1σ	[0.0212, 0.0226]	[-2.464, -1.205]	[2.452, 2.571]	[0.459, 0.505] and $[0.521, 0.568]$	[-0.034, -0.026]
Inverted ordering	$\sin^2 heta_{13}$	$\delta_{\scriptscriptstyle ext{CP}}$	$\Delta m^2_{32} \; [10^{-3} \; {\rm eV^2}]$	$\sin^2 heta_{23}$	$J_{\scriptscriptstyle ext{CP}}$
Most probable value	0.0220	-1.476	2.484	0.558	-0.033
1σ	[0.0213, 0.0227]	[-2.003, -0.976]	[2.424, 2.541]	[0.508, 0.581]	[-0.034, -0.029]
Both ordering	$\sin^2 heta_{13}$	$\delta_{\scriptscriptstyle ext{CP}}$	$\Delta m^2_{32} \; [10^{-3} \; {\rm eV^2}]$	$\sin^2 heta_{23}$	$J_{\scriptscriptstyle ext{CP}}$
Most probable value	0.0219	-1.797	2.510	0.549	-0.033
1σ	[0.0212, 0.0226]	[-2.417, -1.159]	[2.449, 2.568]	[0.461, 0.503] and $[0.520, 0.570]$	[-0.034, -0.026]

Clarence Wret

Analysis I vs II

List of SK samples

	Sample Name	Category	Selection			
	SubGeV elike 0dcy				e-like	0 decay- e
	SubGeV elike 1dcy					1 decay- e
	SubGeV mulike 0dcy		Sub-CeV	Single-ring		0 decay- e
	SubGeV mulike 1dcy		Sub-Gev		μ -like	1 decay- e
	SubGeV mulike 2dcy		_			≤ 2 decay- e
	SubGeV pi0like			Multi-ring	Two e -like rings	
	MultiGeV elike nue	Fully Contained (FC)			e-liko	≤ 1 decay- e
	MultiGeV elike nuebar		Multi-GeV	Single-ring	e-nke	0 decay- e
	MultiGeV mulike				μ -like	
	MultiRing elike nue			Multi-ring		ν_e -like
	MultiRing elike nuebar				e-like	$\bar{\nu}_e$ -like
	MultiRing mulike					other
	MultiRingOther 1				μ -like	
	PCStop	Destigling Contained (DC)	No charge deposition in OD			
	PCThru	Fartially Contained (FC)	Charge deposition in OD			
	UpStop mu		Stopping			
	UpThruNonShower mu	Up-going Muon (UpMu)	Through-going Non-showering			
re Wr	UpThruShower mu		Through-going Showering			

Results comparing constraints

Figure 26. Comparison of 90% confidence regions in Δm_{32}^2 vs. $\sin^2 \theta_{23}$ in normal ordering, among SK+T2K (fixed- $\Delta \chi^2$), T2K (fixed- $\Delta \chi^2$), Super-K (fixed- $\Delta \chi^2$), MINOS [14], NOvA [15] (FC with global $\Delta \chi^2$ over both mass orderings), and IceCube (FC with fixed mass ordering).

Clarence Wret

Clarence Wre

62

Uncertainty sources

Sample	SK atm. flux	T2K beam flux	SK det.	Cross sections	Total Syst.	Total
T2K FHC 1Rmu	0.00%	2.54%	2.39%	2.65%	2.81%	3.13%
T2K RHC 1Rmu	0.00%	2.64%	2.28%	3.58%	3.69%	3.80%
T2K FHC 1Re	0.00%	2.55%	2.69%	3.95%	3.99%	8.87%
T2K RHC 1Re	0.00%	2.72%	4.35%	4.37%	6.35%	14.75%
T2K FHC 1Re1de	0.00%	2.53%	7.87%	6.37%	9.21%	12.14%
SK SubGeV-elike-0dcy	3.53%	0.00%	2.55%	3.47%	1.42%	1.07%
SK SubGeV-elike-1dcy	3.00%	0.00%	3.39%	4.38%	3.03%	2.77%
SK SubGeV-mulike-0dcy	3.02%	0.00%	3.19%	2.72%	2.29%	2.16%
SK SubGeV-mulike-1dcy	3.08%	0.00%	2.58%	2.70%	1.28%	1.13%
SK SubGeV-mulike-2dcy	3.01%	0.00%	2.72%	4.34%	3.32%	3.28%
SK SubGeV-pi0like	2.72%	0.00%	2.39%	3.61%	2.32%	2.34%
SK MultiGeV-elike-nue	4.43%	0.00%	3.26%	7.09%	5.49%	5.61%
SK MultiGeV-elike-nuebar	4.23%	0.00%	3.21%	4.43%	2.97%	2.87%
SK MultiGeV-mulike	4.20%	0.00%	2.73%	4.23%	2.87%	2.90%
SK MultiRing-elike-nue	4.30%	0.00%	3.18%	4.26%	2.76%	2.73%
SK MultiRing-elike-nuebar	4.22%	0.00%	3.37%	4.24%	2.73%	2.63%
SK MultiRing-mulike	4.22%	0.00%	2.28%	4.12%	1.76%	1.75%
SK MultiRingOther-1	4.15%	0.00%	3.84%	5.03%	2.61%	2.56%
SK PCStop	4.37%	0.00%	4.80%	3.61%	4.45%	4.50%
SK PCThru	3.17%	0.00%	2.24%	3.82%	2.09%	2.09%
SK UpStop-mu	4.51%	0.00%	2.00%	3.77%	2.92%	2.99%
SK UpThruNonShower-mu	4.33%	0.00%	1.66%	3.90%	1.80%	1.76%
SK UpThruShower-mu	5.78%	0.00%	5.16%	3.72%	4.19%	4.22%

Bayesian prior choices for δ_{CP}

• Two widely accepted non-informative priors were tested in our analysis of CP violation.

- Uniform $\delta_{\rm CP}$: closer to Jensen's prior for U(3) Haar measure
- Uniform $\sin \delta_{\rm CP}$: closer to Jeffreys' prior ($\propto \sqrt{\det I_{\rm Fisher}}$) for this analysis

