Results from the

oscillation analysis

PA

 $\frac{1}{2}$

Clarence Wret on behalf of SK+T2K joint analysis

IRN Neutrino 2023, Karlsruhe November 27 2023

Outline

- Brief introduction to neutrino oscillations
- The T2K and SK experiments
- Why a joint analysis?
- Results
- The future

 \boldsymbol{n}

 $|v_i\rangle = \sum U_{\alpha i} |v_{\alpha}\rangle$

Neutrino flavour and mass eigenstates are separated

• Neutrinos propagate in mass eigenstates, but are born and detected in the **flavour eigenstate** via weak interaction

Results in oscillations of the detected flavour eigenstates

Clarence Wret 4

● Express probability to detect a neutrino with flavour α and energy *E*, as flavour *β* after it's travelled distance *L*

$$
P(\nu_{\alpha} \to \nu_{\beta}) = \delta_{\alpha\beta} - 4 \sum_{i>j} Re\left(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}\right) sin^{2}(\Delta m_{ij}^{2} \frac{L}{4E})
$$

$$
\Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2} + (-)2 \sum_{i>j} Im\left(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}\right) sin(\Delta m_{ij}^{2} \frac{L}{2E})
$$

Express probability to detect a neutrino with flavour α and energy *E*, as flavour *β* after it's travelled distance *L*

$$
P(\nu_{\alpha} \to \nu_{\beta}) = \delta_{\alpha\beta} - 4 \sum_{i > j} Re \left(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*} \right) sin^{2} (\Delta m_{ij}^{2} \frac{L}{4E})
$$
\n
$$
\Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2}
$$
\n
$$
+ (-) 2 \sum_{i > j} Im \left(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*} \right) sin(\Delta m_{ij}^{2} \frac{L}{2E})
$$
\n
$$
\Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2}
$$
\n
$$
\Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2}
$$
\n
$$
\Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2}
$$
\n
$$
\Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2}
$$
\n
$$
\Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2}
$$
\n
$$
\Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2}
$$
\n
$$
\Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2}
$$
\n
$$
\Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2}
$$
\n
$$
\Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2}
$$
\n
$$
\Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2}
$$
\n
$$
\Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2}
$$
\n
$$
\Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2}
$$
\n
$$
\Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2}
$$
\n
$$
\Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2}
$$
\n
$$
\Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2}
$$
\n
$$
\Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2}
$$
\n
$$
\Delta m_{ij}^{2} = m_{i}^{2} - m_{
$$

- Design of a neutrino oscillation experiment focusses on **L/E**
	- Determines sensitivity to mass squared splitting and mixing angles
	- Optimise L/E to match appearance/disappearance
	- Resolve neutrino energy adequately

● Express probability to detect a neutrino with flavour α and energy *E*, as flavour *β* after it's travelled distance *L*

$$
P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \delta_{\alpha\beta} - 4 \sum_{i>j} Re \left(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*} \right) sin^{2} (\Delta m_{ij}^{2} \frac{L}{4E})
$$
\n
$$
\Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2} + (-) 2 \sum_{i>j} Im \left(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*} \right) sin(\Delta m_{ij}^{2} \frac{L}{2E})
$$
\nDomain of effect from sin² term leads to a unknown mass hierarchy:

\n
$$
\Delta m_{32}^{2} > 0
$$
\nso that the number of terms is the interval.

\n
$$
\Delta m_{32}^{2} > 0
$$
\nso that the number of terms is the interval.

\n
$$
\Delta m_{32}^{2} \Delta m_{32}^{2}
$$
\nSince ν_{α} is the interval of the interval.

\n
$$
\Delta m_{\alpha m}^{2}
$$
\nTherefore, ν_{α} is the interval of the interval.

\n
$$
\Delta m_{\alpha m}^{2}
$$
\n
$$
\Delta m_{\alpha m}^{2}
$$
\n
$$
\Delta m_{\alpha m}^{2}
$$
\nTherefore, ν_{α} is the interval of the interval.

\n
$$
\Delta m_{\alpha m}^{2}
$$
\nTherefore, ν_{α} is the interval of the interval.

\n
$$
\Delta m_{\alpha m}^{2}
$$
\nTherefore, ν_{α} is the interval of the interval.

\n
$$
\Delta m_{\alpha m}^{2}
$$
\nTherefore, ν_{α} is the interval of the interval.

\n
$$
\Delta m_{\alpha m}^{2}
$$
\nTherefore, $\nu_{$

● Express probability to detect a neutrino with flavour α and energy *E*, as flavour *β* after it's travelled distance *L*

$$
P(\nu_{\alpha} \to \nu_{\beta}) = \delta_{\alpha\beta} - 4 \sum_{i>j} Re \left(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*} \right) sin^{2}(\Delta m_{ij}^{2} \frac{L}{4E})
$$
\n
$$
\Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2} \qquad \left. + (-)2 \sum_{i>j} Im \left(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*} \right) sin(\Delta m_{ij}^{2} \frac{L}{2E}) \right)
$$
\n
$$
\text{Measure differences in } P(\nu_{\mu} \to \nu_{e}) \text{ and } P(\text{anti-} \nu_{\mu} \to \text{anti-} \nu_{e})
$$
\n
$$
\to \text{left with single term} \qquad \Delta_{ij} \equiv \Delta m_{ij}^{2} L/4E
$$
\n
$$
P(\nu_{\alpha} \to \nu_{\beta}) - P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}) = -16 J_{\alpha\beta} sin \Delta_{12} sin \Delta_{23} sin \Delta_{31}
$$
\n
$$
J \equiv S_{12} C_{12} S_{23} C_{23} S_{13} C_{13}^{2} sin \delta
$$
\n
$$
J \equiv S_{12} C_{12} S_{23} C_{23} S_{13} C_{13}^{2} sin \delta
$$
\n
$$
\text{Nunokawa et al, Prog. Part. Nucl. Phys. 60, 338}.
$$

• The most general form of mixing matrix is seldom used; instead separate into three mixing matrices $s_{ij} = \sin\theta_{ij}$

$$
U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_{ij} = cos\theta_{ij} \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$

Atomspheric or
"2,3" sector
sector

• The most general form of mixing matrix is seldom used; instead separate into three mixing matrices $s_n = \sin A_n$

$$
U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\text{Gamma} \atop \text{Cij}} \text{cos}\theta_{ij}
$$
\n
$$
\text{Atomspheric or} \begin{pmatrix} 2c_{13} & 0 & c_{13} \\ 0 & -s_{13}e^{-i\delta} & 0 & c_{13} \\ 0 & 0 & 1 \end{pmatrix}
$$
\n
$$
\text{Atomspheric or} \begin{pmatrix} 2c_{12} & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$
\n
$$
\text{Atomspheric or} \begin{pmatrix} 2c_{13} & 0 & c_{13} \\ 0 & 0 & 1 \end{pmatrix}
$$
\n
$$
\text{Solar, or "1,2" sector} \begin{pmatrix} 5c_{11} & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$
\n
$$
\text{L/E} \sim \text{400-500km/GeV}
$$

• The most general form of mixing matrix is seldom used; instead separate into three mixing matrices $s_{ii} = \sin\theta_{ii}$

$$
U = \begin{pmatrix} 1 & 0 & 0 \ 0 & c_{23} & s_{23} \ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} s_{13} & 0 & s_{13}e^{-i\delta} \\ -s_{12} & s_{13}e^{-i\delta} & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$

\nAtomspheric or
\n"2,3" sector
\nReactor experiments (Daya Bay, RENO, Double Chooz)
\nL/E ~ 1km/MeV

• The most general form of mixing matrix is seldom used; instead separate into three mixing matrices $s_{ii} = \sin\theta_{ii}$

$$
U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_{ij} = \cos\theta_{ij} \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$

Solar experiments (SNO, SK) long baseline reactor experiments (KamLAND, JUNO) **L/E > 100km/MeV**

[From MIT](http://web.mit.edu/josephf/www/nudm/SNO.html)

The T2K and SK experiments

The "pit" 280m after the target station, housing ND280, INGRID, and other near detectors

The SK detector: T2K's far detector and conducts its own atmospheric neutrino analysis

Clarence Wret 23

The SK detector

- 50kt water Cherenkov detector, 2.7 km water equivalent overburden
- Running since 1996, with latest upgrade to SK-V in 2018 relevant to this analysis (now doped with Gd!)
	- 2.5° off-axis with similar flux to ND280
- 11,146 20" PMTs in ID, 1,885 8" PMTs in OD 40% PMT coverage

Why a joint analysis?

Why a joint analysis • T2K has degeneracies with δ_{CP} and mass ordering

Why a joint analysis • T2K has degeneracies with δ_{CP} and mass ordering

Why a joint analysis But, T2K has good sensitivity to mixing angle $sin^2\theta_{23}$

Why a joint analysis

- Both experiments are sensitive to δ_{CP} from v_e appearance
- T2K is not sensitive to mass ordering, but good constraint on δ_{CP}
- **SK has good constraint on mass ordering**, but barely on δ_{CP}: sees an average effect, due to energy resolution
	- $-$ T2K's sin²θ₂₃ constraint helps reducing degeneracies in SK

Why a joint analysis

- Both experiments are sensitive to δ_{CP} from v_e appearance
- T2K is not sensitive to mass ordering, **but good constraint on** δ_{CP}
- **SK** has good constraint on mass ordering, **but barely on δ**_{CP}: sees an average effect, due to energy resolution
	- $T2K$'s sin² θ_{23} constraint helps reducing degeneracies in SK

Why a joint analysis

SK sees multiple neutrino sources: here we use atmospheric neutrinos, and **beam neutrinos** from T2K

- Same detector, sometimes similar selections and fluxes
	- **Unify systematics and selections where possible**
	- Improved oscillation constraints through sharing systematics, and using high-statistics SK samples to inform T2K samples
	- Utilise high-statistics near-detector samples from T2K to constrain aspects of atmospheric selections: expose tensions
- Beam+atmospheric analysis may be required for Hyper-Kamiokande competitiveness with DUNE (depending on mass ordering and δ_{CP})

Clarence Wret 25

Selections $[Eur.Phys. J.C 83 (2023) 9, 782] \qquad \qquad \text{OCHCCLLOLIS}$ [PTEP 2019 (2019) 5, 053F01]

- T2K's 2020 analysis as basis
	- 5 samples: **single-ring** separated by **lepton flavour**, **Michel** electron, and **beam running mode**

- SK's 2019 analysis as basis
	- 18 samples, separated by **lepton flavour**, event **topology**, and **visible energy**
	- SK IV, before Gd-doping
	- 3244.4 days of atmospheric neutrino data

Shared systematics

- Utilise interaction model expertise from both experiments: unify low energy model and CCQE
- Apply T2K ND for relevant atmospheric selections

- Shared det. systematics
- No shared flux systematics

Fake-data studies

- T2K uses "fake data" to gauge impact of missing interaction model features
	- How would a bias manifest if model X is true nature, but we fit it with our model
- Set "data" to be a model, redo near-detector analysis, propagate constraints from near detector to far detector, extract bias on oscillation parameters
- 14 different models tested: study impact on δ_{CP} and J, sin² θ_{23} , mass ordering and Δm^2 ₃₂ constraint
- Largest impact from Continuum Random Phase Approximation (CRPA) and the multiplicity of multi-pion events
	- Latest T2K analysis has uncertainties related to this, which we did not include in our analysis; hence a large impact
	- Smearing of Δm² ³² of 3.6x10-5 eV² : **larger than overall syst uncertainty on Δm²₃₂**

 $\left. \right.$ Clarence Wret $\left. \right. \right. \left. \left. \right. \left. \right. \left. \left. \right. \right. \left. \left. \right. \left. \left. \right. \right. \left. \right. \left. \right. \left. \right. \left. \right. \right. \left. \left. \right. \right. \left. \left$

Results

Results

- Four analysis groups:
	- Two Bayesian MCMC analyses
	- One simplified frequentist analysis
	- SK's official frequentist analysis
- Here presenting results from the **two Bayesian MCMC** analyses, using different implementations

Reactor constraint on $sin^2\theta_{13}$: 0.0218±0.0007 (PDG 2019)

Results, Jarlskog invariant

- \bullet >2 σ exclusion of J=0 in normal ordering
- Nearly 3 σ exclusion of J=0 in inverted ordering
- Similar (but weaker) exclusion for Analysis II

Results, CP-violating phase

- \bullet Similar results for δ_{CP} phase constraint
- δ_{CP} =π is just included in 2σ for normal ordering and a prior flat in $sin\delta_{CP}$
- Inverted ordering nearly excludes $\delta_{CP} = 0$, π at 3 σ for both prior choices

 $\sqrt{ }$: excluded \div : not excluded

 \checkmark (\times): excluded but may not be robust against the possible bias from an out-of-model effect

- 90% to 2σ exclusion of J=0 and δ_{CP} =0, π
- Dependent on prior choice, dependent on variable
- Clarence Wret 33 • Analysis I and II are (mostly) consistent

Results, atmospheric

- Constraint on Δm^2 is weaker than T2K result due to fake-data studies
- Will improve with updated interaction modelling
- Normal ordering: weak upper octant preference
- Inverted ordering: stronger upper octant preference

Results, Bayes factors • Express octant and ordering preferences as Bayes factors (ratios of posterior probabilities)

• Moderate preference for normal ordering, weak preference for upper octant

- Lower octant preferred by SK, upper octant preferred by T2K
	- Joint analysis has little octant preference

Clarence Wret 36

Results, p-values • Construct posterior predictive distributions for all T2K and SK samples

- Can then construct Bayesian p-values for all T2K and SK samples
- Compatible p-values between analysis I and II, and with T2K 2020 results
	- p=**0.254** (shape), p=**0.202** (norm)

Future

- Writing short paper on oscillation analysis, expect soon!
- Long paper on method and model developments, including full oscillation result
- Two complementary frequentist oscillation analyses underway, one being the official SK atmospheric analysis
	- Will do Feldman-Cousins confidence intervals, and CL_s
- Interest from both collaborations to pursue another analysis
	- Have begun studying impact of more SK atmospheric data (SK I-III and later) and T2K beam data (still have another 1.7x to collect!)
	- Scope to deeper investigate flux correlations, develop neardetector selections targeted at atmospheric selections
	- … your ideas here!

Summary

- Official simultaneous analysis between SK atmospheric and T2K beam neutrinos complete
	- First analysis to deep-dive into shared systematics!
- Numerous benefits: lifting oscillation parameter degeneracies, correlating systematics, sharing knowledge
	- A necessary exercise for future Hyper-Kamiokande experiment
- Teasing on 2σ exclusion of J=0; exclusion of CP violation between 90% and 2σ
- Preference for normal ordering, weak preference for upper octant
- Stay tuned for papers!

Backups

The T2K near detectors

- Fluxes: v_{μ} and anti- v_{μ} dominated with different E_{ν}
	- ND280: 2.5° off-axis, 0.6 GeV narrow band used in OA
	- INGRID: on-axis, 1.3 GeV wide band used for monitoring

- Multiple targets in INGRID and ND280: C_8H_8 , H₂O, Ar, Pb, Fe
- More detectors rolling into the ND280 pit, e.g. WAGASCI/BabyMIND, NINJA, proton and water modules

The ND280 near detector

- Oscillation analysis utilises the FGD+TPC selections
	- Use FGD1 (CH) and FGD2 (CH, **H2O**) to constrain neutrino flux and interaction cross-section
	- Water target important, as it's the target in SK

- Sign selection, \sim 8% MIP resolution in TPC; 0.2% μ /e confusion
	- Can constrain wrong-sign backgrounds in-situ

Flux at T2K SK

The SK detector

- Excellent *μ*/*e* separation: <1% mis-assign *e* as *μ*
- Reconstruction simultaneously fits all PMT hits, inspired by MiniBooNE

- Runs a multi-Cherenkov ring reconstruction, down-selects to single ring, and runs dedicated single ring fitter
	- Select number of rings and delayed Michel electrons
	- This analysis selects **single ring events**

Clarence Wret 46

The SK detector

- Cherenkov ring shape (sharp vs fuzzy) chiefly determines μ vs e
- Additionally select on delayed Michel electrons

1Re 0de 1Rμ <2de

MoU

- SK and T2K signed memorandum of understanding (MoU) in late 2019
- Pursue joint oscillation analysis of SK atmospheric and T2K beam neutrinos
- Official effort from both experiments, with bi-weekly meetings and active consulting of experts
- MoU set out to use existing experiment techniques but also modify analyses **under supervision of experts** when necessary
- The analysis is **not just a statistical combination**, but leverages strengths of both experiments, e.g.
	- Use T2K's near-detector to constrain neutrino interaction model for SK atmospheric selections
	- Share parts of the interaction model where appropriate and feasible
	- Unify reconstruction and simulation of SK's beam and atmospheric neutrinos
	- Use high statistics SK atm. samples to understand features in T2K selections, e.g. 1Re1de and SubGeV e-like 1de
	- Develop earth model for neutrino oscillations

Clarence Wret 48 – And many more!

SK running periodsFrom L. Wan@NEUTRINO 2022 **Gd concentration at SK-VI:** 0.011% in weight. 2002 2006 2008 2018 2019 2020 1996 2022 SK-III SK-V $SK-I$ SK-II **SK-IV** SK-VI "SK-Gd" Aug-200 1111111 $SK-II$ SK-IV $CK_{-}V$ **Pure water Gd-loaded water** 6,511 days live-time 583.3 days + the future...

Figure 117: $\sin^2 \theta_{23}$ from real data fit with (blue shaded) and without (yellow shaded) reactor constraint applied, for normal (left), inverted (center) and both (right) orderings.

Bayes factors for each experiment

Example of the fake data fit results that showed large biases

Gaussian smearing applied on data

• We evaluate the possible bias in the oscillation parameter measurement due to the possible mis-modeling.

- Generate a simulated data set using an alternative model and fit it with our nominal model.
- If there is a significant bias, we update our model with additional systematics or apply smearing on the oscillation parameter.

• The second step of the robustness test is done after the data fit.

- . We take the difference between nominal fit and simulated data fit results.
- . Impose this shift to the data fit to see if the bias in the interval edges can change our conclusion
- This effect is tested on δ_{CP} and Jarlskog invariant (relevant to our CP statement).

*Here $\Delta y^2 = 1.4.9$ lines are shown but it does not quarantee the correct coverage

• We also tested whether it can change our conclusion on the significance of CP violation.

- The size of the shift in the credible interval edges of δ_{CP} and Jarlskog invariant was checked.
- None of them caused a shift of 2σ interval edges over the value of interest ($\delta_{CP} = 0, \pi$, $J_{CP} = 0$)

• Therefore it does not change our conclusion on CP violation around 2σ .

Highest posterior probability

SK+T2K preliminary, Analysis 1

Clarence Wret 58

Analysis I vs II

List of SK samples

Results, comparing constraints

Figure 26. Comparison of 90% confidence regions in Δm_{32}^2 vs. $\sin^2\theta_{23}$ in normal ordering, among SK+T2K (fixed- $\Delta \chi^2$), T2K (fixed- $\Delta \chi^2$), Super-K (fixed- $\Delta \chi^2$), MINOS [14], NOvA [15] (FC with global $\Delta \chi^2$ over both mass orderings), and IceCube (FC with fixed mass ordering

Clarence Wret 61

Uncertainty sources

Bayesian prior choices for δ_{CP}

● Two widely accepted non-informative priors were tested in our analysis of CP violation.

- Uniform δ_{CP} : closer to Jensen's prior for $U(3)$ Haar measure
- Uniform sin δ_{CP} : closer to Jeffreys' prior ($\propto \sqrt{\det I_{\text{Fisher}}}$) for this analysis

