### LiquidO R&D and coming projects IRN Neutrino - KIT Karlsruhe

### Mathieu BONGRAND

for the LiquidO Collaboration

November 27, 2023









### Liquid scintillators neutrino detectors

Neutrinos interactions produce scintillation light which is wavelength shifted and transported to PMTs at the edges  $\rightarrow$  high transparency !

Many advantages:

- homogeneous target
- scale and cost
- energy resolution
- radio-purity & self-shielding
- ▶ isotope loading (~3%)

But PMT timing resolution (1-5 ns)

and photo-coverage wash out the events topology  $\lesssim$  0.5 m.





M. Bongrand - Subatech - IRN Neutrino - LiquidO

### Segmented neutrino detectors

Shallow depth neutrino detectors use segmentation

- $\blacktriangleright \ e^+ \ n$  : time and space coinc  $+ \ 2 \ \gamma \ 511$  keV
- particle tracking for high energy neutrinos



Dead materials introduced to build the segmented volumes

Bugey-3 (500 kg - 8.5 cm)

### Double Chooz energy spectra

Example of Double Chooz background:

- Accidentals:  $\gamma n$  fortuitous coincidences
- Cosmogenics:  $\beta^- n$  decays (mostly <sup>9</sup>Li)
- Fast neutrons: p-recoil + n-capture or two n





[Nature Physics 16, pages 558-564 (2020)]

#### None of these backgrounds has a positron-like prompt event !

# LiquidO principle

Opaque liquid scintillator to preserve local information of interactions

Dense network of **wavelength shifting fibers** to collect the scintillation light at the interaction points and transport it to the **SiPMs** 



Preserve spatial precision ( $\sigma_{xy,z} < 1 \text{ cm}$ ) and fast timing ( $\sigma_t \sim 0.1 \text{ ns}$ )



# PID and background rejection

Unprecedented particle identification (PID) at MeV scale



Double Chooz near (400 m)







### Opaque liquid scintillator

Our first opaque scintillator: **NoWash** scintillator [arXiv:1908.03334] (80% LAB + 20% paraffin wax + 0.3% PPO)



- Short scattering length (<1 cm) and moderate absorption length (>2 m)
- Opacity depends on the paraffin concentration or temperature

Other candidates being investigated:  $\mu$ -crystals [arXiv:1807.00628], emulsion, water-based [arXiv:2301.09608]...

# LiquidO light collection

Kuraray B3 fibers produced in Japan

B-2, B-3



| Core     |                                                 | Polystylene(PS)                  | n₀=1.59 | 1.05 |  |  |  |  |
|----------|-------------------------------------------------|----------------------------------|---------|------|--|--|--|--|
| Cladding | for single cladding<br>inner for multi-cladding | Polymethylmethacrylate<br>(PMMA) | n₀=1.49 | 1.19 |  |  |  |  |
|          | outer for multi-cladding                        | Fluorinated polymer<br>(FP)      | n=1.42  | 1.43 |  |  |  |  |

SiPMs Hamamatsu MPPCs S13360-1350 or 1375

(Tvp, Ta=25 °C

Materials

SPTR < 190 ps [NIM A 695 (2012) 354-358]



\*SPTR: single photon time resolution FWHM

### Mini-liquido: experimental demonstration since 2021

- 10 L prototype + thermal control [5-40°C]
- ▶ 64 fibers + 1 PMT + WaveCatcher (3.2 GS/s)
- Mono-energetic electron beam (<sup>90</sup>Sr spectrometer 0.4-1.8 MeV)



### Mini-liquido: electronics

- SiCs boards: SiPM 20-dB RF amplifier T°C probe
- ▶ SiBB: 32 ch LV & HV DACs and T°C HV loop interfaces



Digitization with WaveCatcher [NIM A 629 (2011) 123-132]





### Mini-liquido: water phase

First data taken with water to test the detector timing



# Mini-liquido: LAB phase

#### Timing potential: Cherenkov vs scintillation



- LAB without shifter (slow)
- Cherenkov peak in agreement with H<sub>2</sub>O
- Cherenkov threshold visible



# Mini-liquido: LAB phase

Light collection as a function of fiber distance to  $e^-\ {\rm beam}$ 



- LAB without shifter (slow)
- more light than H<sub>2</sub>O
- Iow acceptance
- similar pattern



### Mini-liquido: LAB + PPO

#### Including wavelength shifter PPO ( $\leq 3 \text{ g/L}$ )



- ► LAB + PPO
- more light collected by the fibers
- similar pattern



### Mini-liquido: NoWash 40°C

#### NoWaSH scintillator at high temperature



- ▶ NoWaSH 40°C
- light-loss due to 20% paraffin
- no sign of absorption compared to LAB



# Mini-liquido: NoWash 5°C

#### NoWaSH scintillator at low temperature



# Demonstration of the light confinement with opaque scintillator!

#### **Opaque medium**

- changing pattern
- more light close to the beam
- less light far from the beam
- ▶ light-ball  $\sim 4 \text{ cm}$



# Mini-liquido: NoWash 5°C

#### NoWaSH scintillator at low temperature



Publication coming soon

#### **Opaque medium**

- regular transition from transparent to opaque
- almost twice more light in the first fibers



# Coming projects

Two new projects in preparation

**Mini**- $\gamma$  **@ IJCLab** (under construction)



AM-OTech @ Chooz (under preparation)



 $\sim$ 100 kg 256 fibers (×2 SiPMs) Reconstruction 511 keV  $\gamma$ 's Demonstration of PID Test different scintillators [5-10] tons target ~10000 fibers EIC - UKRI funded Reactor physics + innovation 2022-2027

### AntiMatter-OTech

Ultra-near site @ Chooz  $2\times 4.2~{\rm GW_{th}}$  -  $L_{\nu}\approx 35~{\rm m}$ 



Expected rate 25000  $\overline{\nu}_e$  / day - 10M  $\overline{\nu}_e$  / year + some reactor off data

### Future prospects

#### SuperChooz project ${\sim}10$ ktons - after 2030



**Physics program:** improve precision on  $\theta_{13}$  and  $\Delta m^2_{31}$ , indirectly improve  $\delta_{CP}$ , test unitarity of PMNS matrix

### Conclusion and perspectives

- Large neutrino detectors very efficient thanks to transparancy but are blind to the event topology
- Segmented neutrino detectors try to detect the positron and the annihilation γ's with more or less success
- LiquidO technology tries to gather the advantages of both techniques using an opaque liquid scintillator
- Thanks to R&D effort the confinement of the scintillation light has been demonstrated in two prototypes
- New projects are coming: mini-γ (liquidO PID) and AM-OTech (reactor anti-neutrinos)
- Possible demonstration for future project SuperChooz

https://antimatter-otech.ijclab.in2p3.fr/ https://liquido.ijclab.in2p3.fr/



# Thank you for your attention



## Double Chooz $\theta_{13}$



### JUNO precision measurements

#### Sub-percent precision will be obtained by JUNO, except for $heta_{13}$

|                                                     | Central Value | PDG2020                | $100  \mathrm{days}$  | 6 years                | 20 years               |
|-----------------------------------------------------|---------------|------------------------|-----------------------|------------------------|------------------------|
| $\Delta m_{31}^2 \ (\times 10^{-3} \ {\rm eV}^2)$   | 2.5283        | $\pm 0.034~(1.3\%)$    | $\pm 0.021 \ (0.8\%)$ | $\pm 0.0047 \ (0.2\%)$ | $\pm 0.0029 \ (0.1\%)$ |
| $\Delta m_{21}^2 \; (\times 10^{-5} \; {\rm eV^2})$ | 7.53          | $\pm 0.18$ (2.4%)      | $\pm 0.074$ (1.0%)    | $\pm 0.024~(0.3\%)$    | $\pm 0.017 \ (0.2\%)$  |
| $\sin^2 \theta_{12}$                                | 0.307         | $\pm 0.013$ (4.2%)     | $\pm 0.0058~(1.9\%)$  | $\pm 0.0016 \ (0.5\%)$ | $\pm 0.0010 \ (0.3\%)$ |
| $\sin^2 \theta_{13}$                                | 0.0218        | $\pm 0.0007 \ (3.2\%)$ | $\pm 0.010~(47.9\%)$  | $\pm 0.0026~(12.1\%)$  | $\pm 0.0016$ (7.3%)    |



Chin.Phys.C 46 (2022) 12, 123001 - [arXiv:2204.13249]

# DUNE $\theta_{13}$ and $\Delta m^2_{31}$

The precision on  $\theta_{13}$  will be comparable to the actual precision of reactor experiments



# PMNS unitarity triangle

