ATLAS Run2 Higgs $\rightarrow \gamma \gamma$ mass and e/ γ energy calibration

Linghua Guo (DESY) on behalf of ATLAS collabration

IRN Terascale @ Marseille 26th October 2023

Introduction

Why Higgs boson mass is important?

- govers coupling between Higgs and other SM particles
- key input for global electroweak fit
- electroweak vacuum stability
- free parameter in SM (experiemental)

At LHC, m_H is measured with $H \rightarrow \gamma \gamma$ and $H \rightarrow 4I$ decays thanks to their excellent mass resolution and S/B ratio

This talk will present the full run 2 ATLAS $H \rightarrow \gamma \gamma$ mass measurement with 140 fb⁻¹ data (paper link)

For a good m_{μ} measurement with photons

"just think about what are at least needed ""

Major requirements:

- Good photon selection against the jet fakes photon
- Vetex algorithm for trackless process (e.g. $gg \rightarrow \gamma\gamma$)
- Minimize m_H uncertainty:
 - good S/B ratio
 - statistical uncertainty ~ $m_{\gamma\gamma}$ resolution (γ energy, vertex resolution, etc)
 - systematic uncertainty ~ photon energy scale
 - Splitting into categories often helps

Other important ones:

- Accurate modelling of signal and background
- Interference between $gg/gq \rightarrow H \rightarrow \gamma\gamma$ and $gg/gq \rightarrow \gamma\gamma$ affects the Higgs mass peak

- ATLAS has powful **photon identification** criteria and **isolation selection**
- Calorimeter pointing information trained in vertex NN improve m_{yy} resolution by up to 8%

90% efficiency Iso&ID for unconverted photon EGAM-2021-01

How $m_{\rm H}$ is measured with photons

Events are further classified into categories characterised by different:

- m_{γγ} resolution (V low η, unconv)
- S/B ratio (V high p_{Tt})
- γ energy syst. (V low η, unconv)

How $m_{\rm H}$ is measured with photons

14 categories definition based on:

- number of converted photon
- photon pseudo-rapidity
- diphoton transverse thrust p_T

Categories optimized to reduce the total mass uncertainty by 17% compared with an inclusive measurement

How $m_{\rm H}$ is measured with photons

 m_{H} is obtained by a maximum unbinned likelihood fit on $m_{\gamma\gamma}$, simultaneously in all the 14 categories:

- signal modelled by a double-sided crystal function depending on hypothesis m_H, i.e. pdf(m_{yy}|m_H)
- bkg modelled by exponential, power law or exponentiated polynomia

Fitted $m_{\gamma\gamma}$ for unconverted and converted categories in central-barrel and high $p_{\tau\tau}$ regions

Run 2 H $\rightarrow\gamma\gamma$ mass results

 $m_{\mu} = 125.17 \pm 0.11 \text{ (stat.)} \pm 0.09 \text{ (syst.)} = 125.17 \pm 0.14 \text{ GeV}$

- A total 0.11% precision achieved, with 0.09% (0.07%) relative statistical (systematic) uncertainty
- The best fits of m_{μ} per category are consistent with a p-value of 8%
- ~ a factor 4 improvement on systematic uncertainty w.r.t. previous (36.1 fb⁻¹)

 $m Previous~(36.1~fb^{-1}):~m_{H}=124.93\pm0.21(
m stat)\pm0.34(
m syst)\,
m GeV=125.98\pm0.40\,
m GeV$

DESY.

Run 2 H $\rightarrow\gamma\gamma$ mass results

m_H systematic breakdown

Final Run2 (140 fb⁻¹)

Paritual Run2 (36.1 fb⁻¹)

Source	Impact $[MeV]$		Source	Systematic uncertainty on $m_H^{\gamma\gamma}$ [MeV]
Photon energy scale	83		EM calorimeter cell non-linearity	± 180
$Z \to e^+ e^-$ calibration	59		EM calorimeter layer calibration	± 170
$E_{\rm T}$ -dependent electron energy scale	44		Non-ID material	± 120
$e^{\pm} \to \gamma \text{ extrapolation}$	30		ID material	± 110
Conversion modelling	24		Lateral shower shape	± 110
Signal–background interference	26]	$Z \rightarrow ee$ calibration	± 80
Resolution	15	-	Conversion reconstruction	± 50
Background model	14		Background model	± 50
Selection of the diphoton production vertex	5		Selection of the diphoton production vertex	± 40
Signal model	1		Resolution	± 20
Total	90		Signal model	± 20

How was the systematics reduced from 340 MeV to 90 MeV:

- Benefit from the extensive works that refine the photon energy calibration and associated uncertainties (factor 2)
- E_T-dependent electron energy scale uncertainties are constrained by data-to-MC energy scale difference measured in E_T bins with Z→ee events (factor 2)

Effect on mass peak due to interference between $H \rightarrow \gamma\gamma$ and $\gamma\gamma$ +jets is currently included as systematic. Better simulation will help to

include the interference as a correction to the future analysis

In the following, I will discuss about the ATLAS electromagnetic calorimeter energy calibration

 $m Previous~(36.1~fb^{-1}):~m_{H}=124.93\pm0.21(
m stat)\pm0.34(
m syst)\,
m GeV=125.93\pm0.40\,
m GeV$

DESY.

- Sampling calorimeter with lead (liquid argon) as dense (active) material
- 4-layer structure to record the longitudinal shower information
 - Layer 0: presampler used to estimate energy loss due to material before ECAL
 - Layer 1: fine η granularity to distinguish e⁺e⁻ pair from neutral pion and photon conversion
 - Layer 2: main deposition of EM shower
 - Layer 3: estimate leakage to hadronic calorimeter

For precise energy response (in particular **energy linearity**), the **various layers** should be properly calibrated and intercalibrated

Final run 2 egamma calibration paper

was out last month

Extensive efforts made, such as improved material description upstream the ECAL, new clustering algorithm, improved electronics calibration, detector uniformity, etc. I will **focus 3 parts** of the entire calibration:

- Layer 1 and layer 2 intercalibration
- Photon leakage correction
- Systematic constraints with data-to-MC energy scale difference measured in E_T bins with Z→ee events (energy non-linearity)

Layer 1 and layer 2 intercalibration

Rebalance of relative energy between **layer 1** and **layer 2** between data and MC, using both **muons** and **electrons**:

Muon

Pros:

- minimum ionized particle \rightarrow blind to upstream material
- compact shower in 1-2 cells \rightarrow easy energy reconstruction

Cons:

- affected by pileup and electronic noises
- muon longitudinal "shower" different to electron

Electron

Pros:

- less affected by noises
- real shower from electron

Cons:

 $\bullet \ \ \text{bremsstrahlung} \rightarrow \text{sensitive to upstream material}$

- layer1/2 calibration is an important systematic for m_H(γγ), with impact>100 MeV
- Previous: muon-based
- New: combination of both muon and electron results.

Uncertainty improved by ~ 2 in central ECAL

Photon leakage correction

Leakage: "seepage" of EM shower exterior of the reconstruction cluster

- γ vs e residual difference not covered in previous calibration
- ~100 MeV contribution to previous γγ mass uncertainty
- Effect corrected in the new mass result

An illustration of barrel region

E_τ-dependent energy scale uncertainties constraints (energy non-linearity)

Z→ee mass peak used to calculate e/γ data-to-MC energy scale factor $E_{data} = E_{MC}(1+\alpha(\eta))$

- $a(\eta) \rightarrow E_{\tau}$ -dependent energy scale uncertainties to cover energy non-linearity away from $\langle E_{\tau}^{Zee} \rangle \sim 40$ GeV
- New auxiliary measuremnt of $Z \rightarrow ee$ residual energy non-linearity $\alpha'(\eta, E_{\tau})$
 - \hookrightarrow constrain the E_T-dependent energy scale uncertainties

↔ ~ factor 2 (4) reduction for 60 (140) GeV electron

Photon energy scale systematic

Improvement before applying linearity constraint

<u>2015-2016</u>

Full Run 2

For central unconverted photon with p_{τ} =60 GeV (~ m_{μ} /2), uncertainty improved

from 0.3% to 0.15%

Photon energy scale systematic improvement

Another factor 2 reduction benefitting from Z→ee linearity constraints

Conclusion

Full Run 2 γγ:

m_u = 125.17 ± 0.11 (stat.) ± 0.09 (syst.) = 125.17 ± 0.14 GeV

+ Run 1 γγ: m_H = 125.22 ± 0.11 (stat.) ± 0.09 (syst.) = 125.22 ± 0.14 GeV

+ 4-lepton:

m_μ = 125.11 ± 0.09 (stat.) ± 0.06 (syst.) = 125.11 ± 0.11 GeV

The full combined result is still the **most precise**

Very excited to look forward to combination with nice results from CMS

CMS diphoton m_H Phys. Lett. B 805 (2020) 135425

CMS 4-lepton m_H CMS HIG-21-019

ATLAS 4-lepton m_H Phys. Lett. B 843 (2023) 137880

ATLAS Run 2 $\gamma\gamma$ m_H m_{$\gamma\gamma$} resolution, S and B per category

Category	$\sigma_{90}^{\gamma\gamma}[GeV]$	S_{90}	B_{90}	$f_{90} \ [\%]$	Z_{90}
U, Central-barrel, high $p_{\rm Tt}^{\gamma\gamma}$	1.88	42	65	39.1	4.7
U, Central-barrel, medium $p_{Tt}^{\gamma\gamma}$	2.34	102	559	15.4	4.2
U, Central-barrel, low $p_{Tt}^{\gamma\gamma}$	2.63	837	13226	6.0	7.2
U, Outer-barrel, high $p_{\text{Tt}}^{\gamma \overline{\gamma}}$	2.16	31	83	27.4	3.3
U, Outer-barrel, medium $p_{Tt}^{\gamma\gamma}$	2.63	108	981	9.9	3.4
U, Outer-barrel, low $p_{Tt}^{\gamma\gamma}$	3.00	869	22919	3.7	5.7
U, Endcap	3.33	759	29383	2.5	4.4
C, Central-barrel, high $p_{\rm Tt}^{\gamma\gamma}$	2.10	26	44	37.3	3.6
C, Central-barrel, medium $p_{\text{Tt}}^{\gamma\gamma}$	2.62	62	389	13.8	3.1
C, Central-barrel, low $p_{Tt}^{\gamma\gamma}$	3.00	508	9726	5.0	5.1
C, Outer-barrel, high $p_{\text{Tt}}^{\gamma\gamma}$	2.56	34	103	25.0	3.2
C, Outer-barrel, medium $p_{Tt}^{\gamma\gamma}$	3.20	114	1353	7.8	3.1
C, Outer-barrel, low $p_{Tt}^{\gamma\gamma}$	3.71	914	30121	2.9	5.2
C, Endcap	4.04	1249	52160	2.3	5.5
Inclusive	3.32	5653	128774	4.2	15.6

Copied from Laura Nasella

ATLAS Run 2 γγ m_H

Secondary systematics

Additional and secondary systematic uncertainties are included in the likelihood model

- Signal and background modelling: an inaccurate model can cause a bias in the m_H measurement
 - Evaluated by injecting sig (bkg) MC sample over a bkg (sig) Asimov \forall category, then refit with S+B model and compute m_H shift
 - Effect uncorrelated among categories, impact of 5 (18) MeV for signal (background)
- Interference between $gg \rightarrow \gamma\gamma$ and $gg \rightarrow H \rightarrow \gamma\gamma$ processes causes a shift of the m_H
 - Evaluated by injecting interference MC sample over a S+B Asimov \forall category, then refit with S+B model and compute m_H shift
 - Effect correlated among categories, expected 26 MeV impact
- Photon energy **resolution** (PER): evaluated as interquartile difference of $m_{\gamma\gamma}$ distribution per category, applied on width of DSCB
- Photon conversion reconstruction affecting category migrations
 - Estimated with data/MC comparison in $Z \rightarrow ll\gamma$ events, correlated to corresponding scale effect
- NN vertex selection effect on m_H (5 MeV)
 - Estimated with data/MC comparison in $Z \rightarrow ee$ events where e are treated as unconverted photons
- Luminosity / BR $\gamma\gamma$ / QCD scale / PDF + α_s / Parton shower / Spurious signal / Yield
 - All included and with \sim null impact on m_H

ATLAS Run 2 γγ m_H

category compatibility

 Δm_{H}^{i} [GeV]

ATLAS Run 2 γγ m_H

Run1+Run2 combination

ATLAS layer intercalibration

ATLAS in-situ calibration

E_T-dependent energy scale uncertainties constraints

E_T-dependent energy scale uncertainties constraints

DESY.

ATLAS electronics calibration

