

Evidence for $H \rightarrow Z\gamma$ in the combination of ATLAS and CMS results IRN Terascale | 26 October 2023 Andrew Gilbert

Introduction

- CMS and ATLAS have extensive programmes to characterise the properties of the Higgs boson
 - Wide range of production and decay processes probed \Rightarrow established couplings to fermions and vector bosons
- Target more rare and challenging signatures, e.g. $H \rightarrow Z\gamma$
 - Small branching fraction, 1.5 x10⁻³. Similar to $H \rightarrow \gamma \gamma$ but require $Z \rightarrow ee/\mu\mu$ on top -
 - Loop decay \Rightarrow sensitive to new physics that could modify BF
 - In particular, models can modify $B(H \rightarrow Z\gamma) / B(H \rightarrow \gamma\gamma)$ -

- Examples:
 - _
 - Models with **additional** colourless charged **scalars**, **leptons** or **vector bosons** that couple to the Higgs boson -

Models where Higgs boson is a composite state, a pseudo Nambu–Goldstone boson, or a neutral scalar originating from a different source

Introduction

- CMS and ATLAS have searched for the $H \rightarrow Z\gamma$ decay using Run 2 data
 - Using the II_Y final state, with $m_{\parallel} > 50$ GeV
- Similar strategies: categorise events to exploit production mode kinematics and fit m_{IIV} distribution in each category, with analytic functions for background

JHEP 05 (2023) 233 CMS

No. categories	8
Prod modes	ggF, VBF, VH+ttH (lep)
Background uncertainty	Discrete profiling
m _H	125.38 GeV
Signal strength	2.4 ± 0.9 (stat) ± 0.3 (syst)
Significance Obs (Exp)	2.7 (1.2)

PLB 809 (2020) 135754 **ATLAS**

6

ggF, VBF

Spurious signal

125.09 GeV

 2.0 ± 0.9 (stat) ± 0.4 (syst)

2.2 (1.2)

Analysis strategies

- Dedicated selections for vector-boson fusion production
- CMS: lepton-tag category for VH and ttH associated production
- slices of kinematic BDT

A. Gilbert (LLR)

m_{IIV} reconstruction

- Signal from narrow peak in the invariant mass of the $I+I-\gamma$ system
- Apply dedicated final-state radiation corrections to the momenta of muons with nearby photons
- Kinematic fits for the dilepton mass using Breit–Wigner to model the Z boson resonance
 - Improves resolution by 10-30%
 - Resulting m_{IIv} resolution is 1.4–2 GeV, depending on the final state and event topology

Category		Events	<i>S</i> ₆₈		<i>B</i> ₆₈		w ₆₈ [Ge	S_{68}/B_{68}	₅₈ [10 ⁻²]	S ₆₈
VBF-enriche	ed	194	2.7		18.7		3.7	14	4.3	
High relative	p_{T}	2276	7.6		112.8		3.7		5.7	
High $p_{\mathrm{T}t} \ ee$		5567	9.9		444.0		3.8		2.2	
Low $p_{\mathrm{T}t}$ ee		76679	34.5	6	654.1		4.1	(0.5	
High $p_{Tt} \mu \mu$	ļ	6979	12.0		610.8		3.9	/	2.0	
Low $p_{\mathrm{T}t} \mu \mu$	1	00 876	43.5	8	8861.5		4.0	(0.5	
Inclusive	1	92 571	110.2	16	701.9		4.0).7	
138fb^{-1}	Lepton		Dijet 1	Dijet 2	Dijet 3	Ur	ntagged 1	Untagged 2	Untagged 3	8 U
SM signal yield			-							
ggH	0.51	$\mathrm{e^+e^-}\ \mu^+\mu^-$	$\begin{array}{c} 1.10\\ 1.41 \end{array}$	1.62 2.05	9.44 12.1		6.89 8.52	7.35 9.17	29.8 38.0	
VBF	0.09	e^+e^- u^+u^-	1.94 2.40	0.76 0.97	1.13 1.43		0.71 0.89	0.35 0.43	0.92 1.18	
$VH + t\bar{t}H$	1.84	e^+e^- u^+u^-	$0.04 \\ 0.05$	0.13 0.16	1.89 2.36		0.31 0.39	0.17 0.21	$0.45 \\ 0.57$	
SM resonant background		Г [.] Г [.]								
$H \rightarrow \mu^+ \mu^-$	0.14	$\mu^+\mu^-$	0.27	0.27	0.43		0.62	0.49	2.02	
Mass resolution (GeV)	2.12	${ m e^+e^-}\ \mu^+\mu^-$	1.91 1.52	2.06 1.61	2.15 1.72		1.80 1.37	1.97 1.42	2.12 1.62	
Data yield	1485		168	589	11596		1485	1541	2559	
S/\sqrt{B}	0.06		0.54	0.24	0.26		0.45	0.35	0.53	

A. Gilbert (LLR)

29.0

0.51

0.65

0.27

Event Categorisation - CMS

Event Categorisation - ATLAS

 p_{Tt} : component of $Z\gamma p_T$ perp. to difference of Z and y 3-momenta \Rightarrow

Similar to p_T, but better resolution

Background modelling

 $\mu\mu$ high p_{Tt}

 $\mu\mu$ low $p_{\mathrm{T}t}$

- Parametric function chosen from several families:
 - Exponential, power law, Laurent, Bernstein polynomial
 - **CMS:** multiplied by step-function and convoluted with Gaussian for low mass turn-on
- Selection procedure:
 - **ATLAS:** simultaneous optimisation of fit range and function \Rightarrow aims to reduce bias on extracted signal yield
 - Find function with good χ^2 , prefer fewer parameters, minimise bias from "spurious signal" in fits to background templates
 - **CMS:** discrete profiling method
 - Treat choice of functional form as a discrete nuisance parameter in the fit, and profile in likelihood scan
 - Demonstrated to minimize bias and has good coverage properties
 - Penalty term applied for functions with higher numbers of free parameters

Third-order Bernstein polynomial

Third-order Bernstein polynomial

115–160

115-160

Systematic uncertainties

- Overall, analyses are statistically limited, and systematics do not play a large role
- Most impacting uncertainties:
 - **Theoretical uncertainties** on SM Higgs cross section and $B(H \rightarrow Z\gamma)$
 - **Underlying event / parton shower**
 - **Efficiency uncertainties** for leptons and photons
 - Background modelling:
 - Absorbed into statistical uncertainty for CMS
 - Spurious signal uncertainty 1.5-39% for ATLAS

CMS uncertainties

Sources

Theoretical $-\mathcal{B}(\mathrm{H} \to \mathrm{Z}\gamma)$ - ggH cross section ($\mu_{\rm F}$, $\mu_{\rm R}$) - ggH cross section ($\alpha_{\rm S}$) – ggH cross section (PDF) - VBF cross section ($\mu_{\rm F}, \mu_{\rm R}$) – VBF cross section ($\alpha_{\rm S}$) – VBF cross section (PDF) – WH cross section ($\mu_{\rm F}, \mu_{\rm R}$) – WH cross section (PDF) – ZH cross section ($\mu_{\rm F}$, $\mu_{\rm R}$) – ZH cross section (PDF) -WH/ZH cross section ($\alpha_{\rm S}$) $-t\bar{t}H$ cross section ($\mu_{\rm F}, \mu_{\rm R}$) $-t\bar{t}H$ cross section ($\alpha_{\rm S}$) $-t\bar{t}H$ cross section (PDF) Underlying event and parton sho Integrated luminosity L1 trigger Trigger - Electron channel – Muon channel Photon identification and isolatic Lepton identification and isolation - Electron channel – Muon channel Pileup **Kinematic BDT VBF BDT** Photon energy and momentum – Signal mean – Signal resolution Lepton energy and momentum – Signal mean – Signal resolution

ATLAS uncertainties

Uncertainty (%)		Year-to-year correlation		
Normalizati	วท			
	57	Vaa		
	2.0	Tes Voc		
	2.5	Vos		
	2.0	Ves		
	0.4	Ves		
	0.4	Ves		
	21	Yes		
	+0.6	Yes		
	-0.7 1.7	Yes		
	+3.8	Yes		
	-3.1 1.3	Yes		
	0.9	Yes		
	+5.8	Yes		
	2.0	Yes		
	3.0	Yes		
wer 3	.7–4.4	Partial		
1	.2–2.5	Partial		
0	.1–0.4	No		
0	.9–1.9	No		
0	.1–0.4	No		
n 0	.2–5.0	Yes		
n				
0	.5–0.7	Yes		
0	.3–0.4	Yes		
0	.4-1.0	Yes		
2	.5-3.7	Yes		
5. Chana manana	9–14.0	Yes		
snupe purume	iers			
Ω	1_0 4	Vec		
3	.1–5.9	Yes		
0		100		
(0.007	Yes		
0.00	07-0.010	Yes		

Sources Total cross-section and efficiency [%] ggF Underlying event 1.3 perturbative order 4.7-9.6 PDF and α_s 1.8–2.8 5.7 $B(H \rightarrow Z\gamma)$ Total (total cross-section and efficiency) 7.5–11 *Category acceptance* [%] ggF Underlying event 0.1–11 0.3-0.4 ggF H $p_{\rm T}$ perturbative order ggF in VBF-enriched category 37 ggF in high relative $p_{\rm T}$ category 21 ggF in other categories 10–15 Other production modes 1.0–15 0.4–3.5 PDF and α_s 11–37 Total (category acceptance) $H \rightarrow Z\gamma$ Sources *Luminosity* [%] 1.7 Luminosity *Signal efficiency* [%] Modelling of pile-up interactions 0.0-0.2 Photon identification efficiency 0.8–1.8 Photon isolation efficiency 0.7–1.9 Electron identification efficiency 0.0-2.3 Electron isolation efficiency 0.0-0.1 Electron reconstruction efficiency 0.0-0.5 Electron trigger efficiency 0.0-0.1 Muon selection efficiency 0.0-0.6 Muon trigger efficiency 0.0–1.6 Jet energy scale 0.0-3.5 Jet resolution 0.0–15 Jet pile-up 0.0–7.5 0.0–11 Jet flavor Signal modelling on $\sigma_{\rm CB}$ [%] Electron and photon energy resolution 0.5-3.4 Muon – Inner detector resolution 0.0–1.2 Muon – Muon spectrometer resolution 0.0–3.4 Signal modelling on μ_{CB} [%] Electron and photon energy scale 0.09-0.15 Muon momentum scale 0.0-0.03

Higgs boson mass measurement

Spurious signal

Background modelling [number of spurious signal events]

A. Gilbert (LLR)

0.19

1.5–39

Results per category

• Results from respective CMS and ATLAS publications:

• CMS dijet 3 category has more significant excess. Mutual channel compatibility p-value 0.2% (2.3 s.d)

ATLAS results

Category	μ	Significance
VBF-enriched	$0.5^{+1.9}_{-1.7} (1.0^{+2.0}_{-1.6})$	0.3 (0.6)
High relative $p_{\rm T}$	$1.6^{+1.7}_{-1.6} \ (1.0^{+1.7}_{-1.6})$	1.0 (0.6)
High $p_{Tt} ee$	$4.7^{+3.0}_{-2.7} (1.0^{+2.7}_{-2.6})$	1.7 (0.4)
Low $p_{\mathrm{T}t} \ ee$	$3.9^{+2.8}_{-2.7} (1.0^{+2.7}_{-2.6})$	1.5 (0.4)
High $p_{Tt} \mu \mu$	$2.9^{+3.0}_{-2.8} (1.0^{+2.8}_{-2.7})$	1.0 (0.4)
Low $p_{\mathrm{T}t} \ \mu\mu$	$0.8^{+2.6}_{-2.6} (1.0^{+2.6}_{-2.5})$	0.3 (0.4)
Combined	$2.0^{+1.0}_{-0.9} \ (1.0^{+0.9}_{-0.9})$	2.2 (1.2)

A. Gilbert (LLR)

e

Combination procedure

- Combination performed at the level of the likelihood function \Rightarrow fit to combined ATLAS+CMS data set
 - First CMS+ATLAS Higgs combination using Run 2 data -
- Correlation of systematic uncertainties
 - Experimental uncertainties treated as uncorrelated between experiments
 - Theory uncertainties: main ggH cross section and $H \rightarrow Z\gamma$ branching fraction uncertainties (highest impact) -
- Other production mode uncertainties (scale/PDF) implemented differently \Rightarrow not correlated
 - Approximate attempts to correlate PDF and other scale uncertainties give negligible difference to the results Luminosity correlation for Run 2 not yet known. Tests with toys assuming fully correlated or uncorrelated show negligible bias
 - --
- Treatment of m_H:
 - CMS result reported only for $m_H = 125.38$ GeV, ATLAS for only 125.09 GeV -Combined results evaluated for both mass values, no difference within the quoted precision

A. Gilbert (LLR)

Results

- Summary showing events summed from all ATLAS and CMS categories
- Only the common subrange in $m_{Z\gamma}$ is visualized
 - Full ranges used in the signal extraction fit -
- Each category are weighted by ln(1+S/B)
 - Proxy for category sensitivity -
 - S and B are the observed signal and background yields in that category, in the 120–130 GeV interval
- Visible excess between 123-127 GeV, consistent with shape expected for signal

Results

- Signal strength: $2.2 \pm 0.6(stat) \pm 0.3(syst)$ = **2.2** \pm **0.7** (1.0 \pm 0.6 expected)
- Significance of **3.4 standard deviations**

- Assuming SM production cross sections:
 - $B(H \rightarrow Z\gamma) = (3.4 \pm 1.1) \times 10^{-3}$
- Mutual compatibility between all 14 categories:
 - p-value > 0.12
- Compatibility with SM hypothesis: **1.9 s.d.**
- Goodness-of-fit of the model to the data:
 - p-value > 0.90 _

A. Gilbert (LLR)

Summary

- First evidence of the $H \rightarrow Z\gamma$ decay
 - Some tension with SM prediction, not yet significant

• Paper has been submitted for publication in PRL

• First CMS-ATLAS Higgs combination in Run 2

- Excellent preparation for full CMS+ATLAS Run 2 combination
 - Allow to perform more detailed tests, including measurement of $Z\gamma/\gamma\gamma$ ratio
 - Interpretations in the effective field theory framework

A. Gilbert (LLR)

A. Gilbert (LLR)

