$HH \rightarrow b\overline{b}\gamma\gamma$ search with ATLAS

Elisabeth Petit CPPM

IRN Terascale Meeting @Marseille 26th of October 2023

Why measuring the Higgs potential?

BSM effects could change $\lambda \Rightarrow$ define deviation of tri-linear term: $\kappa_{\lambda} = \frac{\lambda_{HHH}}{\lambda^{SM}}$ λ_{HHH}

no quartic terms considered here

Why looking for HH production?

- Main production mode: ggF
 - destructive interference between triangle and box diagrams $\Rightarrow \sigma(HH)/\sigma(H) = 0.1\%$

3

• Self-couplings through total HH cross section, and diff. cross section $d\sigma/dm_{HH}$:

Why looking for VBF HH production?

- SM at 13 TeV: $\sigma_{ggF} = 31.05$ fb , $\sigma_{VBF} = 1.73$ fb
- HH production via VBF has unique sensitivity for the so far unmeasured HHVV coupling κ_{2V}

- SM predicts $\kappa_{2V} = \kappa_{V} = 1$, cancellation of the first two diagrams, tiny cross section

- New physics can manifest as $\kappa_{2V} \neq \kappa_{V}^{2}$
 - enhanced production rate, especially at high m_{HH}

\Re Why the HH \rightarrow bbyy channel?

bbbb	Largest BR 😊
	Large multijet and tt bkg 🙁
bbττ	Sizeable BR 😊
	Relatively small bkg 😊
	Small BR 😕
bbyy	Good diphoton resolution 🙂
	Relatively small bkg 😊
bbVV	Large BR 🙂
(→ lνlν)	Large bkg 🙁
bbZZ	Very small BR 🙁
(→ 4I)	Very small bkg 😊

- ♦ First Run 2 paper published in Sep 2022
- Legacy Run 2 paper submitted last Wednesday (arxiv)
 - new dedicated VBF selection

BDT selection

- Kinematics of photon and jets
- Extra HH related variables: $m_{bb\gamma\gamma}^{*}$, $\Delta R_{\gamma\gamma}^{}$, $\Delta R_{bb}^{}$
- VBF related variables:
 - BDT to select the VBF jet
 - kinematics and b-tag score of 3rd and 4th jet
 - m_{ii} , $\Delta \eta_{ii}$, event-shape variables

- ggF κ_{λ} =5.6 + VBF κ_{λ} =10 at low-mass

Simultaneous unbinned maximum likelihood fit in all categories:

- no significant excess observed in data
- Upper limits on signal strength (μ):
 - 12% improvement wrt previous analysis

	Observed median expect			
$\mu_{_{VBF}}$	≤ 96	≤ 154		
μ_{ggF}	≤ 4.1	≤ 5.3		
$\mu_{ggF+VBF}$	≤ 4.0	≤ 5.0		

160

Constraints on κ_{λ} and κ_{2V}

10

Limits on EFT models (1)

♦ HEFT: Higgs effective field theory

- parameterized lagrangian allowing for deviations from SM

- HEFT: Additionally search for benchmarks
 - represent distinct, representative kinematic shapes in 5D HEFT phase space

Limits on EFT models (3)

- SMEFT: Standard Model effective field theory
 - expansion of SM lagrangian with dim-6 operators, includes 5 Wilson Coefficients

- Less general. h is contained in SU(2) doublet (same as SM)
- More useful for global combination: many other LHC searches use SMEFT

Wilson coefficient	95% CL Observed	95% CL Expected
c_H	$\begin{bmatrix} -14.4, \ 6.2 \end{bmatrix}$	[-16.8, 9.7]
$c_{H_{\square}}$	$\begin{bmatrix} -9.4, 10.2 \end{bmatrix}$	[-12.4, 13.7]

• Best fit agrees with SM within 1σ

FConclusion

- New Legacy Run 2 analysis for the search for $HH \rightarrow b\bar{b}\gamma\gamma$
 - now dedicated selection for VBF HH
 - constraints on $\kappa_{\!_\lambda}$ and $\kappa_{\!_{2V}}$ but also EFT
- Comparison of expected limits on κ_{λ} an κ_{2V} for different channels:

$\overline{b}\gamma\gamma$ best for $K_{\underline{\lambda}}$	ĸ	λ	K _{2V}		
	ATLAS	CMS	ATLAS	CMS	
bbyy	[-2.8 ; 7.8]	[-2.5 ; 8.2]	[-1.1;3.3]	[-0.9;3.1]	
bbττ	[-3.1 ; 10.2]	[-2.9 ; 9.8]	[-0.5 ; 2.7]	[-0.9;3.1]	
bbbb (resolved)) [-5.4 ; 11.4]	[-0.5 ; 12.0]	[-0.1 ; 2.1]	[-0.4 ; 2.5]	
bbbb (boosted)		[-5.1 ; 12.2]		[0.7;1.4]	

- Combined limit on μ_{HH} : ~3*SM/experiment
 - evidence at reach at the end of Run 3??

boosted bbbb best for κ_{2v} !

 $\kappa_{_{2V}}$ =0 hypothesis excluded

- \bullet at 6σ level when fixing other couplings to SM values
- at 3σ level when fitting $\kappa_{_{2V}}$ and
- $\kappa_{_\lambda}$ simultaneously

Back-up

Variables for BDT event selection

Variable	Definition			
Photon candidates				
$p_{\rm T}/m_{\gamma\gamma}$	Transverse momentum of each photon divided by the diphoton invariant mass $m_{\gamma\gamma}$			
η and ϕ	Pseudorapidity and azimuthal angle of each photons			
$\Delta R(\gamma_1,\gamma_2)$	Angular distance between the two photons			
<i>b</i> -jet candidates				
<i>b</i> -tag status	Tightest fixed <i>b</i> -tag working point (60%, 70%, 77%) that each jet passes			
p_{T}, η and ϕ	Transverse momentum, pseudorapidity and azimuthal angle of each jet			
$p_{\mathrm{T}}^{bar{b}}$, $\eta_{bar{b}}$ and $\phi_{bar{b}}$	Transverse momentum, pseudorapidity and azimuthal angle of the two-b-jet system			
$\Delta R(b_1, b_2)$	Angular distance between the two candidate <i>b</i> -jets			
$m_{b\bar{b}}$	Invariant mass of the two candidate <i>b</i> -jets			
Single topness	Variable used to identify $t \to Wb \to q\bar{q}'b$ decays. For the definition, see Eq.(??).			
Other jets (only first two, if present, ranked by discrete <i>b</i> -tagging score)				
<i>b</i> -tag status	Tightest fixed <i>b</i> -tag working point (85% or none) that each jet passes			
$p_{\mathrm{T}}, \eta \text{ and } \phi$	Transverse momentum, pseudorapidity and azimuthal angle of each jet			
VBF-jet candidates				
$\Delta \eta(j_1, j_2), m_{jj}$	Pseudorapidity difference and invariant mass of the two jets			
Event-level variables				
Transverse sphericity, planar flow, $p_{\rm T}$ balance	For the definitions, see Ref., Ref., and Eq. (??)			
H_{T}	Scalar sum of the $p_{\rm T}$ of the jets in the event			
$E_{\mathrm{T}}^{\mathrm{miss}}$ and ϕ^{miss}	Missing transverse momentum and its azimuthal angle			
***	The 4-body invariant mass of the two photons and two candidate b-jets, $m^*_{b\bar{b}\gamma\gamma}$ =			
$m_{b\bar{b}\gamma\gamma}$	$m_{b\bar{b}\gamma\gamma} - (m_{b\bar{b}} - 125 \text{ GeV}) - (m_{\gamma\gamma} - 125 \text{ GeV})$			

/BF BDT selection

Fraction of Events / 0.05 100

10⁻²

0

<u>.</u>..

	Variable	Definition		
	p_{T}^{j} and η^{j}	Transverse momentum and pseudorapi	dity of each of the VBF-jet candidates	
	$\Delta R(j, \gamma \gamma b \bar{b})$ and $\Delta \eta(j, \gamma \gamma b \bar{b})$	Angular and pseudorapidity separation $\gamma\gamma b\bar{b}$ system	between the VBF-jet candidates and the	
	m_{jj} and $\Delta \eta(j, j)$	Invariant mass and pseudorapidity sepa	aration of the two VBF-jet candidates	
	$\Delta R(jj, \gamma \gamma b \bar{b})$ and $\Delta \eta(jj, \gamma \gamma b \bar{b})$	Angular and pseudorapidity separation the $\gamma\gamma b\bar{b}$ system	between the VBF-jet candidate pair and	
	$p_{\rm T}^{\gamma\gamma b \bar{b} j j}, \eta^{\gamma\gamma b \bar{b} j j},$ and $m_{\gamma\gamma b \bar{b} j j}$	Transverse momentum, pseudorapidity, by the VBF-jet candidate pair, the two	and invariant mass of the system formed photons and the two <i>b</i> -tagged jets	
	H_{T}	Scalar sum of the $p_{\rm T}$ of the jets in the q	event	
ATLAS ∕s = 13 Te ⊣H → bbγ ₋ow mass	P eV, 140 fb ⁻¹ γ region	$ HH ggF, \kappa_{\lambda}=10$ $ HH vBF, \kappa_{\lambda}=10$ $ HH vBF, \kappa_{\lambda}=10$ $ HH vBF, \kappa_{2v}=3$ $ Single H$ $ \gamma\gamma+jets$ $+ Data sidebands$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SM HH ggF HH ggF, $\kappa_{\lambda}=10$ SM HH VBF HH VBF, $\kappa_{\lambda}=10$ HH VBF, $\kappa_{2V}=3$ Single H YY+jets Data sidebands
			10^{-1}	
		max VBF-jet tagger score		max VBF-jet tagger score

Expected number of events

	High Mass 1	High Mass 2	High Mass 3	Low Mass 1	Low Mass 2	Low Mass 3	Low Mass 4
SM $HH(\kappa_{\lambda} = 1)$ signal	$0.26^{+0.03}_{-0.04}$	$0.194^{+0.021}_{-0.032}$	$0.84^{+0.10}_{-0.14}$	$0.048^{+0.007}_{-0.008}$	$0.038^{+0.004}_{-0.006}$	$0.039^{+0.004}_{-0.006}$	$0.032^{+0.004}_{-0.004}$
ggF	$0.25^{+0.03}_{-0.04}$	$0.188^{+0.021}_{-0.032}$	$0.81\substack{+0.10 \\ -0.14}$	$0.046^{+0.007}_{-0.008}$	$0.036^{+0.004}_{-0.006}$	$0.037^{+0.004}_{-0.006}$	$0.025^{+0.004}_{-0.004}$
$VBF \times 10^3$	$7.9^{+0.6}_{-0.5}$	$5.3^{+0.5}_{-0.4}$	29^{+4}_{-3}	$1.98^{+0.28}_{-0.24}$	$1.71_{-0.14}^{+0.16}$	$1.96^{+0.21}_{-0.19}$	$7.4_{-0.5}^{+0.6}$
Alternative $HH(\kappa_{\lambda} = 10)$ signal	$2.5^{+0.4}_{-0.3}$	$1.81^{+0.25}_{-0.20}$	$6.2^{+0.8}_{-0.6}$	$5.0^{+1.2}_{-0.9}$	$3.8^{+0.7}_{-0.5}$	$3.7^{+0.7}_{-0.6}$	$3.6^{+0.4}_{-0.4}$
ggF	$2.3^{+0.4}_{-0.3}$	$1.64^{+0.25}_{-0.19}$	$4.9_{-0.6}^{+0.8}$	$4.7^{+1.0}_{-0.8}$	$3.6^{+0.7}_{-0.6}$	$3.3^{+0.7}_{-0.5}$	$2.04^{+0.34}_{-0.27}$
VBF	$0.231^{+0.019}_{-0.017}$	$0.170^{+0.019}_{-0.017}$	$1.29^{+0.15}_{-0.14}$	$0.28^{+0.20}_{-0.11}$	$0.23^{+0.23}_{-0.12}$	$0.36^{+0.10}_{-0.08}$	$1.57^{+0.17}_{-0.16}$
Alternative VBF $HH(\kappa_{2V} = 3)$ signal	$0.23^{+0.04}_{-0.04}$	$0.20^{+0.05}_{-0.04}$	$3.8^{+0.7}_{-0.6}$	$0.03^{+0.04}_{-0.02}$	$0.03^{+0.06}_{-0.02}$	$0.048^{+0.023}_{-0.015}$	$0.17\substack{+0.04 \\ -0.03}$
Single Higgs boson background	$1.5^{+0.5}_{-0.3}$	$0.48^{+0.21}_{-0.10}$	$0.57_{-0.14}^{+0.25}$	$1.72^{+0.31}_{-0.19}$	$0.53^{+0.08}_{-0.06}$	$0.29^{+0.14}_{-0.07}$	$0.16\substack{+0.06 \\ -0.03}$
ggF	$0.5^{+0.5}_{-0.2}$	$0.14^{+0.21}_{-0.09}$	$0.25^{+0.25}_{-0.12}$	$0.29^{+0.31}_{-0.15}$	$0.08^{+0.08}_{-0.04}$	$0.07^{+0.13}_{-0.06}$	$0.04^{+0.06}_{-0.03}$
$t\bar{t}H$	$0.302^{+0.034}_{-0.032}$	$0.069^{+0.009}_{-0.008}$	$0.063^{+0.008}_{-0.007}$	$0.77^{+0.09}_{-0.08}$	$0.214^{+0.029}_{-0.026}$	$0.100\substack{+0.012\\-0.012}$	$0.048^{+0.005}_{-0.005}$
ZH	$0.61^{+0.06}_{-0.05}$	$0.174^{+0.020}_{-0.016}$	$0.188^{+0.035}_{-0.029}$	$0.49^{+0.05}_{-0.04}$	$0.149^{+0.028}_{-0.025}$	$0.069^{+0.033}_{-0.023}$	$0.028^{+0.010}_{-0.007}$
Rest	$0.17\substack{+0.08 \\ -0.04}$	$0.089^{+0.030}_{-0.016}$	$0.07\substack{+0.04 \\ -0.02}$	$0.181\substack{+0.030\\-0.019}$	$0.089^{+0.016}_{-0.009}$	$0.046^{+0.007}_{-0.004}$	$0.039^{+0.008}_{-0.004}$
Continuum background	$11.3^{+1.5}_{-1.6}$	$3.2^{+0.8}_{-0.8}$	$2.8^{+0.8}_{-0.8}$	$37.2^{+2.9}_{-2.9}$	$10.8^{+1.5}_{-1.5}$	$4.4_{-1.0}^{+0.9}$	$1.1^{+0.5}_{-0.5}$
Total background	$12.8^{+1.6}_{-1.6}$	$3.7^{+0.9}_{-0.8}$	$3.4^{+0.8}_{-0.8}$	$38.9^{+2.9}_{-2.9}$	$11.3^{+1.5}_{-1.5}$	$4.7^{+0.9}_{-1.0}$	$1.3^{+0.5}_{-0.5}$
Data	12	4	1	29	8	5	4

Summary of EFT limits

