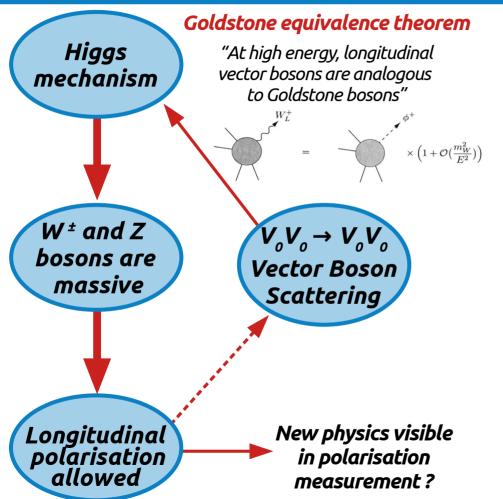
Polarized WZ production observation by ATLAS


Luka SELEM On behalf of the ATLAS Collaboration

IRN Terascale @ CPPM 26/10/2023

Why study polarisation ?

VBS $V_0V_0 \rightarrow V_0V_0$ beyond reach for now

→ W[±]Z bosons joint-polarisation state in inclusive selection as a first step

Polarisation as a **handle to new physics**

Resurrection of interference term with EFT in angular variables [arXiv:1708.07823]

Recent polarised theoretical calculations

→ Check predictions !

→ e.g. WZ:

NLO QCD in 2020 [arXiv:2010.07149], NLO QCD+EW in 2022 [arXiv:2203.01470]

Polarisation in diboson systems at LEP

Only diboson process accessible for such measurements: $e^+ e^- \rightarrow W^+W^-$

Single W boson polarisation measurements:

→ L3 [arXiv:0301027], OPAL [arXiv:0312047], DELPHI [arXiv:0801.1235]

Joint-polarisation measurements:

- L3 [arXiv:0501036]: only correlations between bosons polarisation (decay planes)
- DELPHI [arXiv:0908.1023]: not sensitive enough to f₀₀
- **OPAL** [arXiv:0009021]: **almost 3\sigma** for f_{00} , but **tension** with Standard Model

$\bar{\rho}_{TT} = (67 \pm 8)\%,$		Measured	Expected
$\bar{\rho}_{LT} = (30 \pm 8)\%,$	$\sigma_{ m TT}/\sigma_{ m total}$	$0.781 \pm 0.090 \pm 0.033$	0.572 ± 0.010
	$\sigma_{ m LL}/\sigma_{ m total}$	$0.201 \pm 0.072 \pm 0.018$	0.086 ± 0.008
$\bar{\rho}_{LL} = (3 \pm 7)\%.$	$\sigma_{ m TL}/\sigma_{ m total}$	$0.018 \pm 0.147 \pm 0.038$	0.342 ± 0.016
DELPHI results	OPAL results		

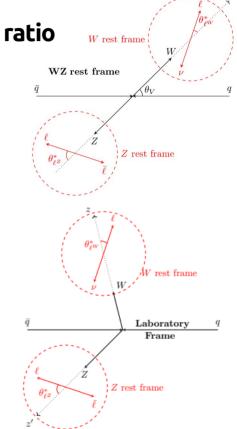
Longitudinal here noted "L"

Measurements at LHC

Diboson process favoured : $p p \rightarrow W \pm Z$

→ Best compromise between **cross section** and **signal to background ratio**

Single boson polarisation in WZ production


- ATLAS: in WZ rest frame, L = 36 fb-1 [arXiv:1902.05759]
- CMS : in Laboratory frame, L = 137 fb-1 [arXiv:2110.11231]

Joint-polarisation fractions in WZ production, L = 139 fb-1

- ATLAS result finally published in Phys. Lett. B 843 (2023) 137895
- Additional improvement on single boson polarisation fractions
- First observation ever of the longitudinal-longitudinal joint-polarisation state in diboson events

Other diboson channels are now being probed:

→ Recently released ATLAS result on joint-polarisation in ZZ production [arxiv:2310.04350]

4

Polarisation in WZ pair production

WZ inclusive production

Experimental signature :

$$p p \to \ell \bar{\ell} \ell' \nu_{\ell'} + X \qquad ,$$

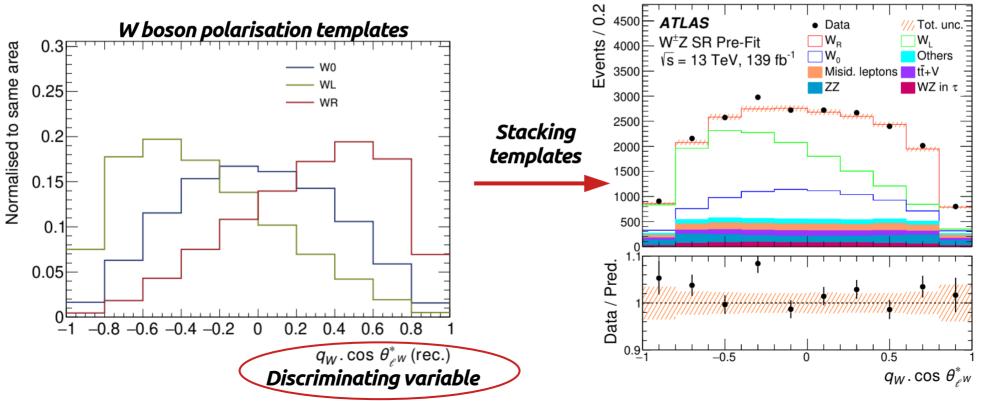
VariableTotalFiducial inclusiveLepton $|\eta|$ --< 2.5</td>A $p_{\rm T}$ of ℓ_Z , $p_{\rm T}$ of ℓ_W [GeV]--> 15, > 20A m_Z range [GeV]66 - 116 $|m_Z - m_Z^{\rm PDG}| < 10$ A $m_{\rm T}^W$ [GeV]--> 30S $\Delta R(\ell_Z^-, \ell_Z^+), \Delta R(\ell_Z, \ell_W)$ --> 0.2, > 0.3L

ATLAS tracker available Reduce background (fake) leptons Reduce virtual photons γ^* : on-shell Z Select sizeable missing E_{τ} (neutrino) Leptons isolation

Irreducible Background (with 3 or more leptons): 18% of selected events

- ZZ: 7.5% , ttZ and ttW: 4% , others...
- →Monte Carlo generation

Reducible Background (with at least 1 fake lepton): 5% of selected events


- « *Misidentified Leptons* » background mainly from **Z+γ, t tbar, Z+jets**
- → Data driven matrix method

= electron

How to measure polarisation

Method : Here for single boson polarisation measurement

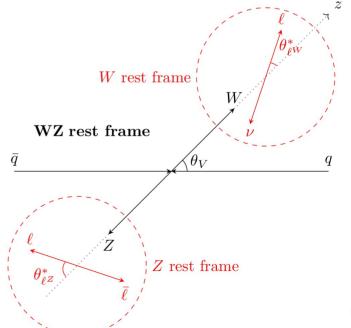
- Generate **polarisation templates** of a **discriminating variable**
- Extract polarisation fractions through a **template fit**

Challenges of this analysis

Low statistics: Expected yield for WZ leptonic signal events with full Run 2 : ~ 17 000 events
 → Around 0.2 for f₀ of W or Z : ~3500 events

→ Around 0.2x0.2 = 0.04 for f_{00} : ~ 1000 events

- Discriminating variable: should distinguish for both bosons polarisation at once
 3 x 3 =9 configurations, reduced to 4 by merging *Left* and *Right* in *Transverse* polarisation
- NLO template: many efforts to obtain polarised templates at highest possible QCD order
 Unbiased measurement

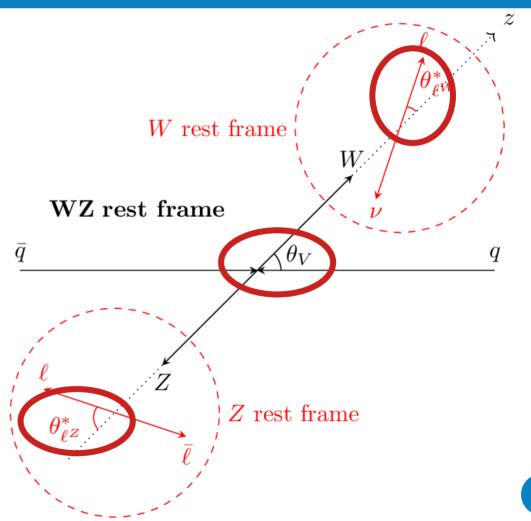

Definition of polarisation fractions

Polarisation fractions are NOT Lorentz invariant: choose a frame

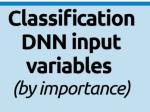
→ Defined from the **joint spin density matrix :**

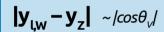
WZ rest frame for joint-polarisation and single boson polarisation (so-called Modified Helicity frame)

- Compare single and joint
- Single Longitudinal fractions of bosons have maximum decorrelation



Joint-polarisation templates


Variable for the joint-polarisation

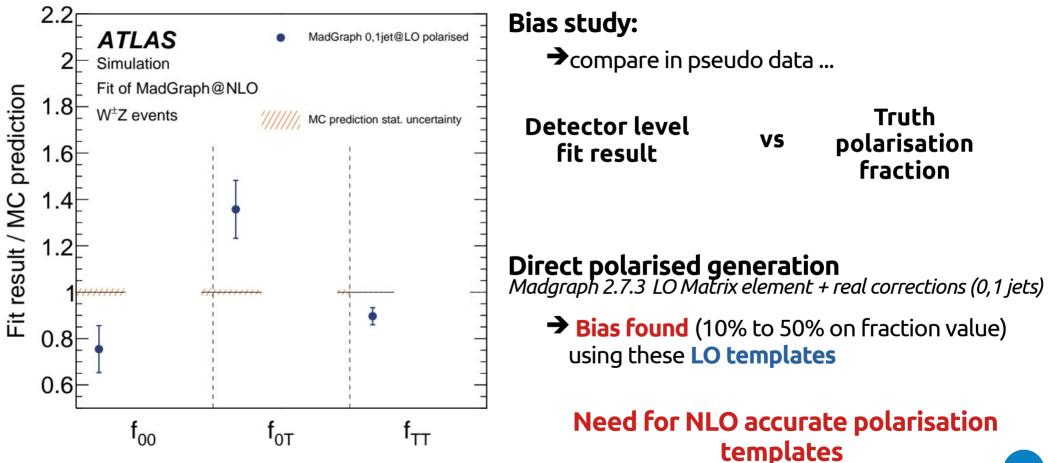

Find a discriminating variable for both bosons polarisation at once

→ Analytical variable |cosθ_v| not discriminant enough

The discriminating variable

 $\Delta \phi(l1^z, l2^z)$


 E_{τ}^{miss}

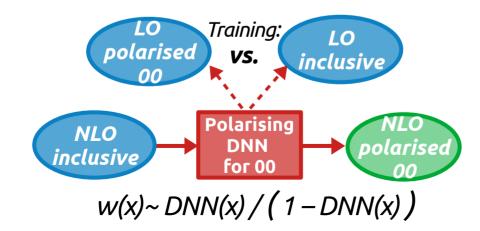


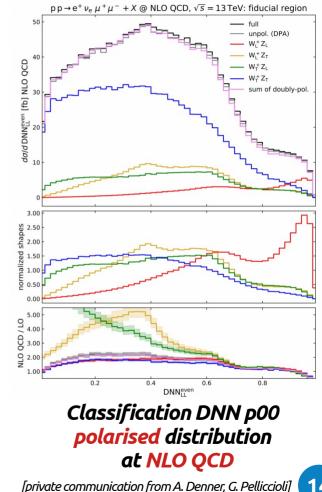
Using a classification DNN:

- Classification DNN between all 4 joint-polarisation states:
- still poorly discriminant between 0T and T0
- Split DNN score for 00 in **4 categories** based on $\cos\theta^*$

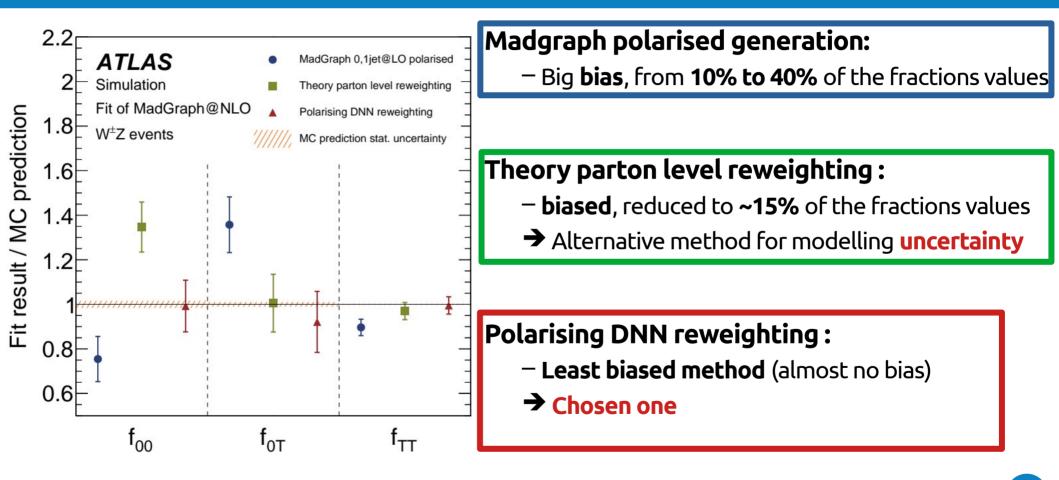
Need for NLO accurate templates

NLO accurate polarisation templates

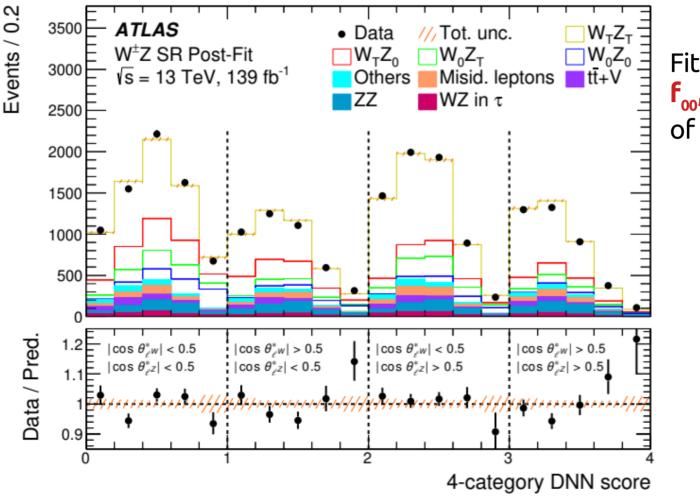

Reweighting to a calculation at NLO QCD


[Collaboration with theorists A. Denner& G. Pelliccioli arXiv: 2010.07149]

→ Parton level reweighting of Madgraph polarised samples


Reweighting using DNNs [arXiv:1907.08209]

→ Acts as some multi-dimensionnal reweighting



Choice of NLO accurate template set

Measurement of joint-polarisation

Binned Maximum Likelihood Template Fit

Fit parameters of interest are **f**₀₀, **f**_{0T}, **f**_{TT} and **N**_{tot} the number of signal event → Decouple overall normalisation from polarisation fraction shape effects

$$f_{_{TO}} = 1 - f_{_{OO}} - f_{_{OT}} - f_{_{TT}}$$

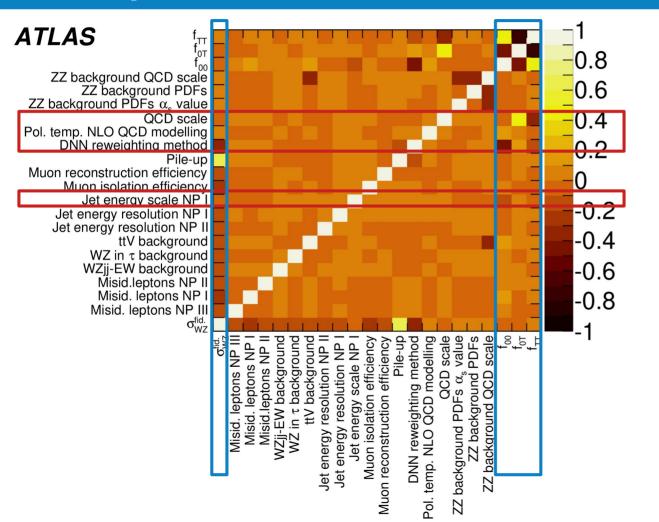
17

Per charge of the W boson

	W+ Z & W- Z		W+ Z		W- Z
f_{00}	0.067 ± 0.010	f_{00}	0.072 ± 0.016	f_{00}	0.063 ± 0.016
$f_{0\mathrm{T}}$	0.110 ± 0.029	$f_{0\mathrm{T}}$	0.119 ± 0.034	$f_{0\mathrm{T}}$	0.11 ± 0.04
$f_{\rm T0}$	$0.179 ~\pm~ 0.023$	$f_{\rm T0}$	0.153 ± 0.033	f_{T0}	0.21 ± 0.04
$f_{\rm TT}$	0.644 ± 0.032	$f_{\rm TT}$	0.66 ± 0.04	f_{TT}	0.62 ± 0.05

All joint-polarisation states observed

– Significance on f_{00} at 7.1 σ

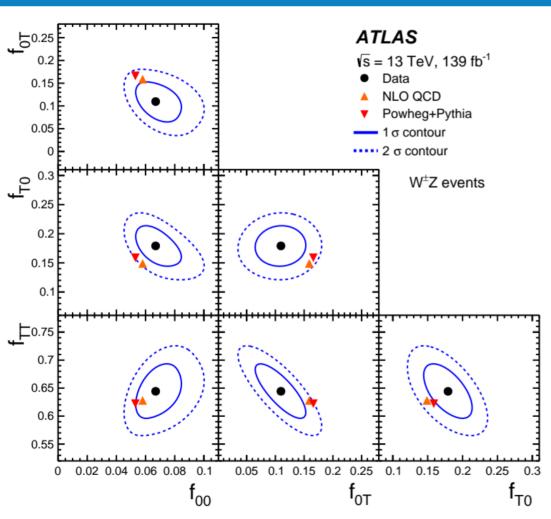

– Significance on $f_{\tau\tau}$ and $f_{\tau\sigma}$ >5\sigma

Measurement performed as well separating by the W charge

- Significance on f₀₀ at 6.9σ in W+Z
- Significance on f_{00} at 4.1 σ in W-Z

No major difference visible in the charge break down (baring 1σ difference in $f_{\tau\sigma}$)

Fit parameters correlations


Parameters of interest :

– **Decoupling** of normalisation and fractions parameters

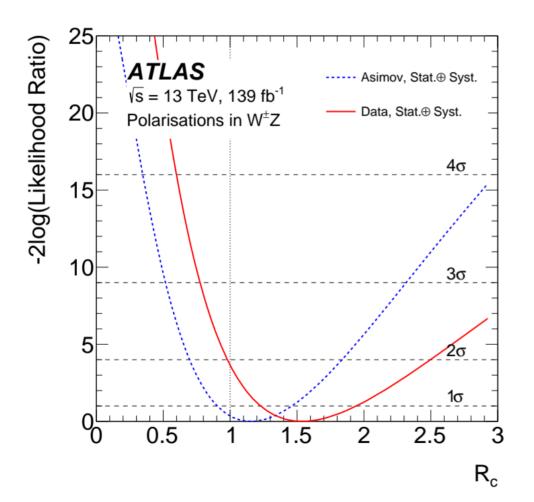
Main uncertainties :

From Higher order QCD
 shape effects on polarisation
 templates

Joint-polarisation CL regions

Strong correlations between

simultaneously extracted fractions


– Confidence Level regions represented for fractions 2 by 2

No tension with theory: better than 2σ agreement

 \rightarrow 1.4 σ global agreement with SM

Joint-polarisation CL regions

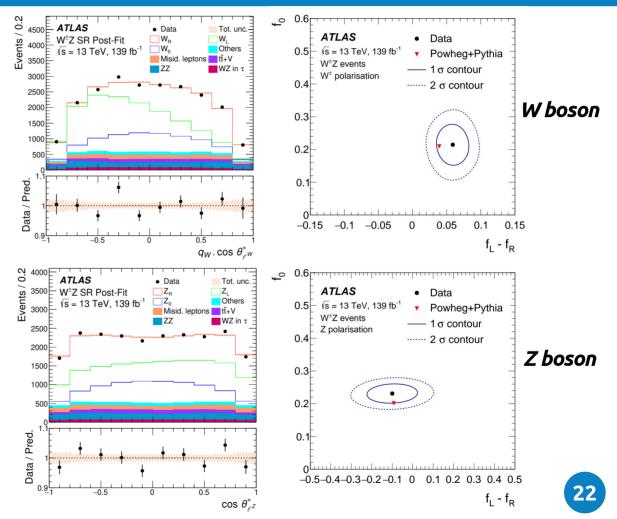
Test of independence of fractions of W and Z by reparametrising :

$$R_c = \frac{f_{00}}{f_0^W f_0^Z}$$

 $f_{0T} = f_0^W - f_{00},$ $f_{T0} = f_0^Z - f_{00},$ $f_{TT} = 1 + f_{00} - f_0^W - f_0^Z$

- If independent, R_c=1
- Theory predicts $R_c \sim 1.3$
- Measurement gives $R_c = 1.54 \pm 0.35$

Evidence for correlation between the bosons polarisations

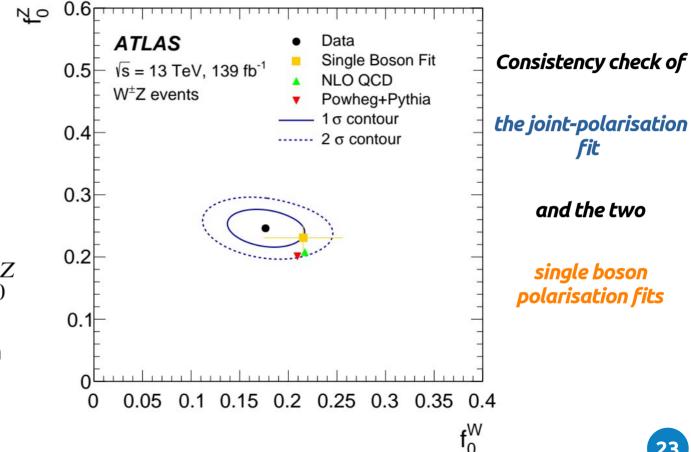

Single boson template fit

Template fit on data at detector level as for joint-polarisation

- Discriminating variables :
 cosθ*_w and cosθ*_z
- Polarisation templates: analytical reweighting

No tension with theory

f₀ mesured with 5 sigma in charge break-down


Consistency with joint-polarisation

Consistency check: $-\mathbf{f}_{0}^{w}$ and \mathbf{f}_{1}^{z} measured using reparametrisation in joint-polarisation fit f _ rW £

$$f_{T0} = f_0^Z - f_{00},$$

$$f_{TT} = 1 + f_{00} - f_0^W - f_0^Z$$

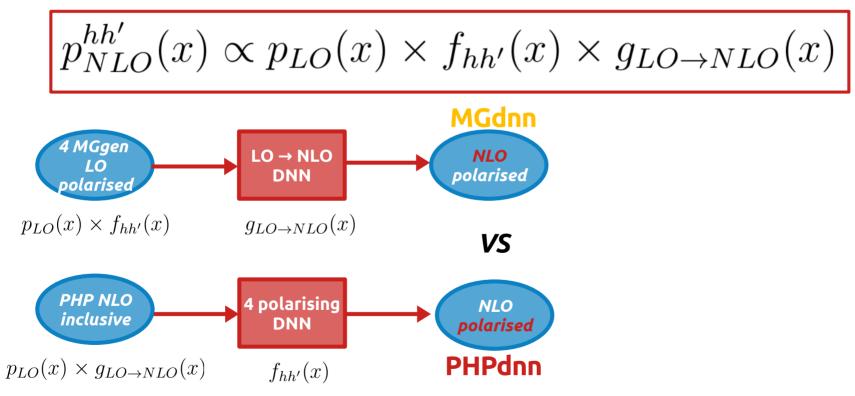
 \rightarrow Agreement within 1 σ with the **single boson** polarisation fit

PROSPECTS

Pioneering methods have been developed :

- 4 joint polarisations
- Classification DNN used by theorist for calculation
- High sensitivity to higher orders in QCD
 DNN reweighting method

Very active field:

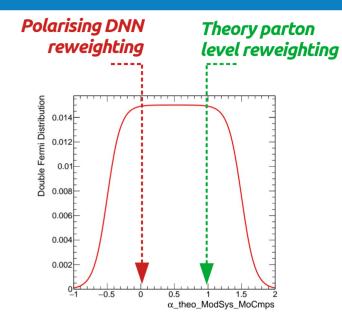

- ZZ joint-polarisation result released [arxiv:2310.04350]
- Efforts to look at polarisation in **more restrictive phase spaces** (p_T^z bins ?)
- \rightarrow Enhance the sensitivity to dimension 6 EFT operators at high energy

Ultimately: Longitudinal-Longitudinal Vector Boson Scattering observation

Thank you for your attention !

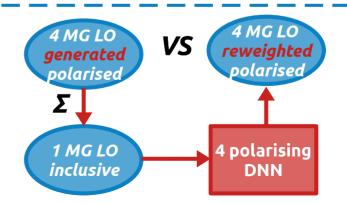
Validation of factorisation assumption

Applying polarising DNN weight to a NLO inclusive sample turns it in a NLO polarised sample if the distribution *p(x)* can be factorised :

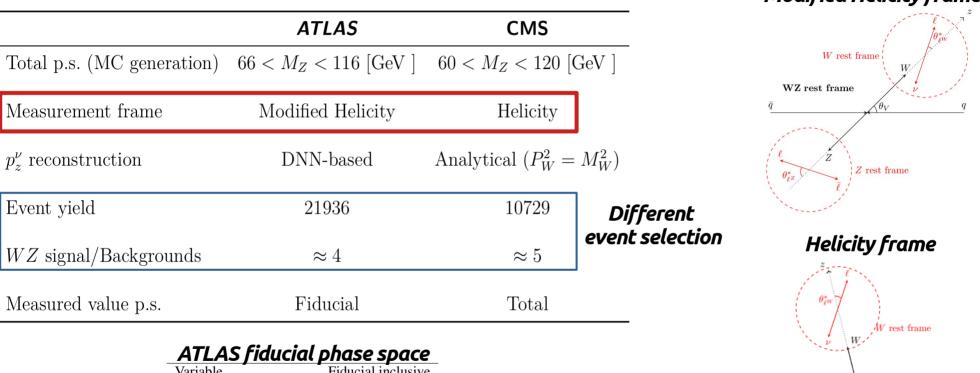


Two ways to obtain NLO polarised sample: Comparable results, assumption validated (26)

Modelling uncertainties


NLO QCD polarisation template set choice uncertainty:

- **Theory parton level reweighting** = 2nd least biased *(over all fractions)*, from a completely different method
- → Shape uncertainty
- Two point uncertainty, no privileged template
- Constraint term to limit the range of the nuisance parameter to the two only alternative template sets



Uncertainty on the DNN reweighting method:

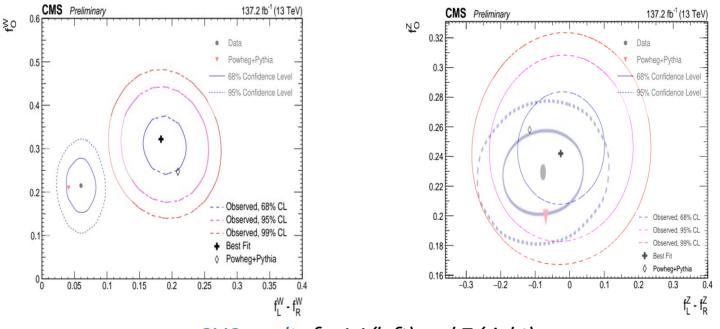
– Small non-closure used to extract uncertainty bands

ATLAS and CMS differences

Modified Helicity frame

Laboratory Frame

Z rest frame


	phuse spuce
Variable	Fiducial inclusive
Lepton η	< 2.5
$p_{\rm T}$ of ℓ_Z , $p_{\rm T}$ of ℓ_W [GeV]	
<i>m</i> _Z range [GeV]	$ m_Z - m_Z^{\text{PDG}} < 10$
$m_{\rm T}^W$ [GeV]	> 30
$\Delta \hat{R}(\ell_Z^-, \ell_Z^+), \Delta R(\ell_Z, \ell_W)$	> 0.2, > 0.3

ATLAS and CMS comparison

CMS published results on full Run 2 data for single boson polarisation fractions

- Not the same frame: **central values not comparable**
- Uncertainties somewhat smaller for W fractions in ATLAS, similar sensitivity for Z fractions
- Again, no tension with theory

<u>CMS results</u> for W (left) and Z (right) Previously presented CL regions in transparency

Uncertainty breakdown

	f_{00}	$f_{0\mathrm{T}}$	$f_{\rm T0}$	$f_{\rm TT}$
Relative unce	rtainty [%]		
e energy scale and id. efficiency μ energy scale and id. efficiency	$\begin{array}{c} 0.34\\ 0.8 \end{array}$	$egin{array}{c} 0.6\ 0.23 \end{array}$	$egin{array}{c} 0.8\ 0.23 \end{array}$	$\begin{array}{c} 0.31 \\ 0.13 \end{array}$
$E_{\rm T}^{\rm miss}$ and jets	3.3	1.3	1.2	0.4
Pile-up	0.6	0.17	0.4	0.15
Misidentified lepton background	2.3	1.6	0.8	0.26
ZZ background	0.9	0.17	0.32	0.07
Other backgrounds	3.0	1.6	1.3	0.4
Parton Distribution Function	0.5	1.8	0.09	0.5
QCD scale	0.19	8	0.9	2.0
Modelling	9	4	2.9	1.2
Total systematic uncertainty	14	15	8	4
Luminosity	0.35	0.24	0.15	0.05
Statistical uncertainty	13	10	12	3.0
Total	19	18	14	5

ATLAS	$(\Delta \widehat{f_{00}})/\widehat{f_{00}}$
$\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$	-0.2 -0.1 0 0.1 0.2
Pol. templates, DNN reweighting method Pol. templates, NLO QCD modelling	
ttV background	
Jet energy scale, NP I	
Misid. leptons, NP I	
Misid. leptons, NP II	· · · · · · · · · · · · · · · · · · ·
WZjj-EW background	· · · · · · · · · · · · · · · · · · ·
tZ background	• •
Muon isolation efficiency	·
Jet energy scale, NPII	·
Jet energy scale, NP III	
Jet energy resolution, NP I	
ZZ background, PDFs	
Misid. leptons, NP III	
Jet energy scale, NP IV	·
Pile-up	• • • • • • • • • • • • • • • • • • •
Jet energy scale, NP V	
ZZ background, PDFs α_{s} value	
Jet energy scale, NP VI	·
Jet energy resolution, NP II	
natic	Nuis. Param. Pull
	Pre-fit Impact on f_{00}
	Post-fit Impact on f_{00}
nplates	_2 _1 0 1 2
•	$(\hat{\theta} - \theta_{o})/\Delta \theta$
	Ranking for $f_{oo}^{(\hat{\theta} - \theta_0)/\Delta \theta}$
	παπκιτις μοι μο

30

Statistical uncertainties at the same level as systematic uncertainties, mainly

- Higher order QCD shape effects on polarisation templates
- Background estimation

Previous ATLAS measurement

36 fb⁻¹ results

	f _o	$f_L - f_R$
W^+ in W^+Z	0.26 ± 0.08	-0.02 ± 0.04
W^- in W^-Z	0.32 ± 0.09	-0.05 ± 0.05
W^{\pm} in $W^{\pm}Z$	0.26 ± 0.06	-0.024 ± 0.033
Z in W^+Z	0.27 ± 0.05	-0.32 ± 0.21
Z in W^-Z	0.21 ± 0.06	-0.46 ± 0.25
Z in $W^{\pm}Z$	0.24 ± 0.04	-0.39 ± 0.16

Compared to 36 fb⁻¹ single boson polarisation measurement: [arXiv:1902.05759]

- Central value not comparable for change of definition of cosθ*
- Uncertainties roughly **divided by 2**
- → ± 0.16
 → Lower improvement for f₀^w who is not statistically dominated
 ~ x4 data,
 ~ /2 stat. uncertainties

|--|

	f _o	$f_L - f_R$
W in W^+Z	0.23 ± 0.05	0.071 ± 0.023
W in W^-Z	0.19 ± 0.05	0.026 ± 0.027
W in $W^{\pm}Z$	0.22 ± 0.04	0.059 ± 0.016
Z in W^+Z	0.223 ± 0.025	-0.20 ± 0.10
Z in W^-Z	0.240 ± 0.029	0.10 ± 0.13
$Z \text{ in } W^{\pm}Z$	0.231 ± 0.019	-0.10 ± 0.08

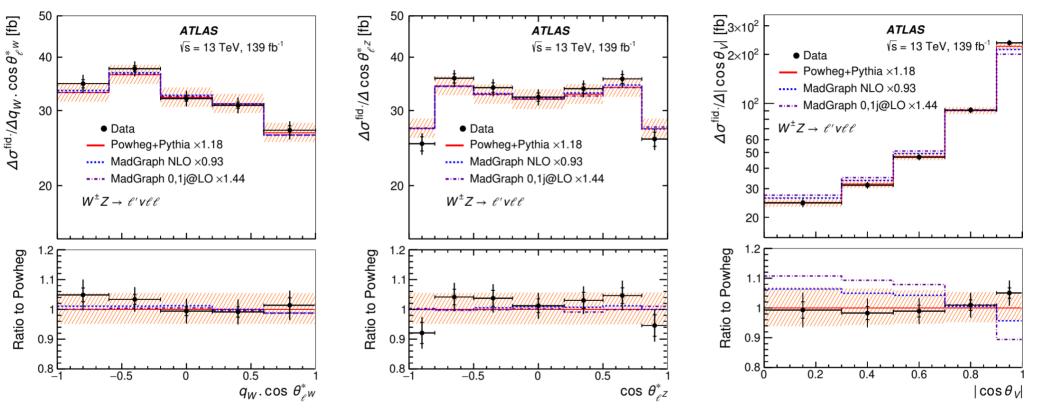
Unfolded distributions

Cross section of inclusive WZ production in the fiducial phase space with leptonic decay :

 \rightarrow Obtained from N_{tot} parameter of the fit, at the **Born level**

 $\sigma^{\text{fid.}}_{W^{\pm}Z \to \ell' \nu \ell \ell} = 64.6 \pm 2.1 \text{ fb}$ **VS NNLO QCD SM prediction** = $64.0^{+1.5}_{-1.3} \text{ fb}$ *With MATRIX [arXiv:1703.09065]*

→Perfect agreement, similar precision


Iterative bayesian unfolding of **polarisation sensitive variables**:

 $\rightarrow \cos\theta_{W}^{*}, \cos\theta_{Z}^{*}, |\cos\theta_{V}|$

Compared to Born level **predictions** from

- NLO inclusive MC sample: Powheg+Pythia and MadGraph5_aMC@NLO+Pythia
- Sum of LO polarised MC MG0,1jet samples
- → All rescaled to integral NNLO QCD cross section prediction

Unfolded distributions

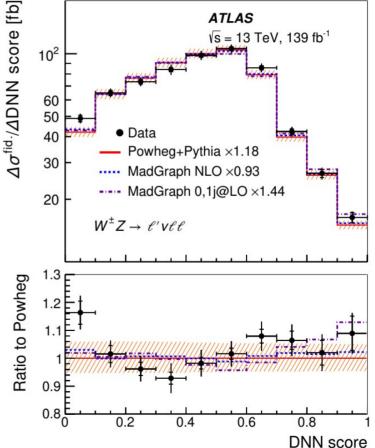
- Good agreement of data with NLO MC

– MG0,1jet at **LO** fails with |cosV| because it has strong **NLO** dependence (Denner&Pelliccioli theoretical calculations)

33

Unfolding the DNN

Classification DNN to be made public


-**Classification DNN** trained at detector level on Madgraph polarised samples

– Uses **low level variables, not p_z^v related**, to be independent from the method chosen for its reconstruction

Used by theorist Denner&Pelliccioli to compute particle level predictions

Unfolded differential cross section

Particle level DNN score feeds the same DNN with particle level variables

