

Vector Boson Scattering @ the LHC

Terascale meeting, Marseille, October 2023

Iro Koletsou

- What is (and what isn't) vector boson scattering?
- Why is it interesting?
- How can we study VBS?
- First observations from both ATLAS and CMS
- Interpretation of the results

Note: this is an incomplete list of VBS-relates activities that leaves space for future discussions at Terascale meetings

Electroweak VVjj production via Vector Boson Scattering:

Terascale 2023

Electroweak VVjj production

CAPP

Electroweak VVjj production:

(including vector boson scattering)

- Characteristic kinematic signature
- Challenging S/B

 $\begin{array}{c} \mathsf{EW VVjj} \\ \overbrace{q}^{q} & \overbrace{\ell}^{q} & \overbrace{\bar{q}}^{q} & \overbrace{\bar{q}}^{q} & \overbrace{\bar{q}}^{\bar{\ell}} & \overbrace{\bar{q}} & \overbrace{\bar{q}}^{\bar{$

Interference between the two processes

Main background:

- QCD VVjj production
- Different kinematic signature
- Important criterion for all VBS analysis strategies

VBS: kinematic signature

Characteristics of a typical VBS event:

- Two high energy forward jets (tagging jets)
- Generally central diboson products
- Suppressed hadronic activity in between the tagging jets

2

4

VBS @ NLO (and beyond)

Adding higher order corrections makes VVjj-EW and VVjj-QCD obsolete

- Currently: include interference into the signal (or background) and assign an uncertainty on it
- Solution: make inclusive measurement creating ah high VVjj-EW purity phase space?

Non exhaustive list of VBS channels:

canal	état final	σ^{EW}_{VVjj}	σ^{QCD}_{VVjj}
$W^{\pm}W^{\pm}jj$	l u l u jj	$4.28{\pm}0.01$	$1.69{\pm}0.02$
$Z\gamma jj$	$ll\gamma jj$	$9.24{\pm}0.02$	$71.28{\pm}0.33$
$W^{\pm}Zjj$	lll u jj	$2.36{\pm}0.01$	$7.19{\pm}0.01$
ZZjj	lllljj	$0.12{\pm}0.01$	$0.21{\pm}0.01$

- $W^{\pm}W^{\pm}$: lead to the first observation in 2018 \rightarrow suffers from high fake background
- WZ: first observation in 2018 \rightarrow suffers from high QCD background
- ZZ: first observation in 2021 \rightarrow very low cross section
- Zy: first observation in 2021 \rightarrow suffers from high QCD background

Notes:

- not all leptonic channels will be discussed in details, see some references (last slide)
- semi leptonic VBS is of high theoretical interest → to be followed (not discussed today)

CAPP

The WZjj channel: ATLAS

• EW/QCD VVjj separation using dedicated BDT

Source

BDT Score

Uncertainty [%]

$EW W \pm W^{\pm}$	210 ± 26	2D fit using:		using 137 fb ⁻¹
$ m QCDW^{\pm}W^{\pm}$	13.7 ± 2.2	m _u . m _{ii}		
Interference $W^{\pm}W^{\pm}$	8.7 ± 2.3	11× 11		
EW WZ	17.8 ± 3.9			$\mathbf{D}\mathbf{W}\mathbf{W}\mathbf{U}\mathbf{U}\mathbf{U}\mathbf{C} = \mathbf{C}0 + 1\mathbf{C}$
QCD WZ	42.7 ± 7.4			$EW WZ 09 \pm 10$
				$QCD WZ II7 \pm I7$
	Variable	$W^{\pm}W^{\pm}$	WZ	_ 2D fit using
	Leptons	2 leptons, $p_{\rm T} > 25/20 {\rm GeV}$	3 leptons,	BDT m.
	$p_{\rm T} > 25/10/20 { m GeV}$	7		
	$p_{ m T}^{ m j}$	$> 50 { m GeV}$	$> 50 { m GeV}$	
	$ ar{m_{\ell\ell}}-m_{ m Z} $	> 15 GeV(ee)	$< 15 \mathrm{GeV}$	
	$m_{\ell\ell}$	$> 20 { m GeV}$	-	
	$m_{\ell\ell\ell}$	-	$> 100 \mathrm{GeV}$	
	$p_{\mathrm{T}}^{\mathrm{miss}}$	$> 30 { m GeV}$	$> 30 { m GeV}$	
	b quark veto	Required	Required	
	$\max{(z^*_\ell)}$	< 0.75	< 1.0	
	$m_{ m jj}$	$> 500 { m GeV}$	$> 500 {\rm GeV}$	
	$ \Delta\eta_{ m jj} $	> 2.5	> 2.5	

	$EW W^{\pm}W^{\pm}$	$3.98 \pm 0.45 \ 0.37 \; { m (stat)} \; \pm 0.25 \; { m (syst)}$
Simultaneous measurement:	FW W7	1.81 ± 0.41
		$0.39~{ m (stat)}~\pm 0.14~{ m (syst)}$

CAPP

	Data stat.	MC stat.	Background	Reco	EW mod.	QCD mod.	Total
$\Delta\sigma_{EW}/\sigma_{EW}$ [%]	±9	±1	±1	± 4	+8 -6	±2	±13
$\Delta\sigma_{Z\gamma}/\sigma_{Z\gamma}$ [%]	± 3	±1	±2	+4 -3	+7 -6	±9	+12 -11

Status of theoretical calculations

Note: all previous results use LO samples for the signal

QCD NLO corrections using different generators (W[±]W[±] channel):^L

Non negligible effect when using approximations

https://arxiv.org/abs/1803.07943

Status of theoretical calculations

Note: all previous results use LO samples for the signal

QCD and EW corrections (W[±]Z channel):

Important shape effects on m_{jj} distribution

J. High Energ. Phys. 2019, 67 (2019)

Anomalous triple and quartic gauge boson couplings on a EFT frame

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i^{(6)}}{\mathcal{L}^2} \mathcal{O}_i^{(6)} + \sum_{j} \frac{f_j^{(8)}}{\mathcal{L}^4} \mathcal{O}_j^{(8)}$$

SM effective Lagrangian

Gauge boson interactions as described by the SM

dim-6 operators

Describing aTGCs and aQGCs VBS not really competitive for their constraint

dim-8 operators

Lowest order operators describing only aQGCs

Can only be constrained by VBS (and tribosons)

Three different types of parameters:

$$\mathcal{L}_{T,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \operatorname{Tr} \left[\hat{W}_{\alpha\beta} \hat{W}^{\alpha\beta} \right]$$
$$\mathcal{L}_{T,1} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\mu\beta} \hat{W}^{\alpha\nu} \right]$$
$$\mathcal{L}_{T,2} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\beta\nu} \hat{W}^{\nu\alpha} \right]$$
$$\mathcal{L}_{T,5} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times B_{\alpha\beta} B^{\alpha\beta}$$
$$\mathcal{L}_{T,6} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times B_{\mu\beta} B^{\alpha\nu}$$
$$\mathcal{L}_{T,7} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times B_{\beta\nu} B^{\nu\alpha}$$
$$\mathcal{L}_{T,8} = B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta}$$
$$\mathcal{L}_{T,9} = B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha}$$

pure field-strength tensor (f_T) pure transverse: only neutral couplings can be induced

$$\mathcal{L}_{M,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right]$$
$$\mathcal{L}_{M,1} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$
$$\mathcal{L}_{M,2} = \left[B_{\mu\nu} B^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right]$$
$$\mathcal{L}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$
$$\mathcal{L}_{M,4} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} D^{\mu} \Phi \right] \times B^{\beta\nu}$$
$$\mathcal{L}_{M,5} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} D^{\nu} \Phi \right] \times B^{\beta\mu}$$
$$\mathcal{L}_{M,6} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\mu} \Phi \right]$$
$$\mathcal{L}_{M,7} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\nu} \Phi \right]$$
mixted Higgs-field-strength (f_M) mixted longitudinal-transverse

$$\mathcal{L}_{S,0} = \frac{c_{S,0}}{\Lambda^4} \left[(D_{\mu} \Phi)^{\dagger} (D_{\nu} \Phi) \right] \times \left[(D^{\mu} \Phi)^{\dagger} (D^{\nu} \Phi) \right]$$
$$\mathcal{L}_{S,1} = \frac{c_{S,1}}{\Lambda^4} \left[(D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) \right] \times \left[(D_{\nu} \Phi)^{\dagger} (D^{\nu} \Phi) \right]$$

pure Higgs-field (f_S) pure longitudinal: cannot induce couplings with photons

	WWWW	WWZZ	ZZZZ	WWAZ	WWAA	ZZZA	ZZAA	ZAAA	AAAA
$\mathcal{L}_{S,0},\mathcal{L}_{S,1}$	Х	Х	Х	0	0	0	0	0	0
$\mathcal{L}_{M,0},\mathcal{L}_{M,1},\mathcal{L}_{M,6},\mathcal{L}_{M,7}$	X	Х	Х	Х	X	Х	Х	0	0
$\mathcal{L}_{M,2},\mathcal{L}_{M,3},\mathcal{L}_{M,4},\mathcal{L}_{M,5}$	0	Х	Х	Х	X	Х	Х	0	0
$\mathcal{L}_{T,0},\mathcal{L}_{T,1},\mathcal{L}_{T,2}$	X	X	X	X	X	X	X	X	Х
$\mathcal{L}_{T,5}, \mathcal{L}_{T,6}, \mathcal{L}_{T,7}$	0	Х	Х	X	X	X	X	Х	Х
$\mathcal{L}_{T,9}, \mathcal{L}_{T,9}$	0	0	X	0	0	Х	X	X	Х

• M_T^{VV} (BSM vs SM) in combination with

PP

• m_{jj} (EW vs QCD)

Considering that EFT model is valid at < 1.5 TeV:

	Observed ($W^{\pm}W^{\pm}$) (TeV ⁻⁴)	Expected ($W^{\pm}W^{\pm}$) (TeV ⁻⁴)	Observed (WZ) (TeV ⁻⁴)	Expected (WZ) (TeV ⁻⁴)	Observed (TeV ⁻⁴)	Expected (TeV ⁻⁴)
$f_{\rm T0}/\Lambda^4$	[-1.5, 2.3]	[-2.1, 2.7]	[-1.6, 1.9]	[-2.0, 2.2]	[-1.1, 1.6]	[-1.6, 2.0]
$f_{ m T1}/\Lambda^4$	[-0.81, 1.2]	[-0.98, 1.4]	[-1.3, 1.5]	[-1.6, 1.8]	[-0.69, 0.97]	[-0.94, 1.3]
$f_{\mathrm{T2}}/\Lambda^4$	[-2.1, 4.4]	[-2.7, 5.3]	[-2.7, 3.4]	[-4.4, 5.5]	[-1.6, 3.1]	[-2.3, 3.8]
$f_{\rm M0}/\Lambda^4$	[-13, 16]	[-19, 18]	[-16, 16]	[-19, 19]	[-11, 12]	[-15, 15]
$f_{\rm M1}/\Lambda^4$	[-20, 19]	[-22, 25]	[-19, 20]	[-23, 24]	[-15, 14]	[-18, 20]
$f_{\rm M6}/\Lambda^4$	[-27, 32]	[-37, 37]	[-34, 33]	[-39, 39]	[-22, 25]	[-31, 30]
$f_{ m M7}/\Lambda^4$	[-22, 24]	[-27, 25]	[-22, 22]	[-28, 28]	[-16, 18]	[-22, 21]
$f_{\rm S0}/\Lambda^4$	[-35, 36]	[-31, 31]	[-83, 85]	[-88, 91]	[-34, 35]	[-31, 31]
$f_{ m S1}/\Lambda^4$	[-100, 120]	[-100, 110]	[-110, 110]	[-120, 130]	[-86, 99]	[-91, 97]

CAPP

The Zyjj EFT analysis: CMS

Discriminative variables:

• m_{Zγ}

			01	01	TT 1. 1.
~	Exp.	Exp.	Obs.	Obs.	Unitarity
Coupling	lower	upper	lower	upper	bound
$F_{\rm M0}/\Lambda^4$	-12.5	12.8	-15.8	16.0	1.3
$F_{ m M1}/\Lambda^4$	-28.1	27.0	-35.0	34.7	1.5
$F_{\rm M2}/\Lambda^4$	-5.21	5.12	-6.55	6.49	1.5
$F_{\rm M3}/\Lambda^4$	-10.2	10.3	-13.0	13.0	1.8
$F_{\rm M4}/\Lambda^4$	-10.2	10.2	-13.0	12.7	1.7
$F_{\rm M5}/\Lambda^4$	-17.6	16.8	-22.2	21.3	1.7
$F_{\rm M7}/\Lambda^4$	-44.7	45.0	-56.6	55.9	1.6
$F_{\rm T0}/\Lambda^4$	-0.52	0.44	-0.64	0.57	1.9
$F_{ m T1}/\Lambda^4$	-0.65	0.63	-0.81	0.90	2.0
$F_{\mathrm{T2}}/\Lambda^4$	-1.36	1.21	-1.68	1.54	1.9
$F_{\mathrm{T5}}/\Lambda^4$	-0.45	0.52	-0.58	0.64	2.2
$F_{\rm T6}/\Lambda^4$	-1.02	1.07	-1.30	1.33	2.0
$F_{\mathrm{T7}}/\Lambda^4$	-1.67	1.97	-2.15	2.43	2.2
$F_{\rm T8}/\Lambda^4$	-0.36	0.36	-0.47	0.47	1.8
$F_{\rm T9}/\Lambda^4$	-0.72	0.72	-0.91	0.91	1.9

Unitarity strategy:

Computing the energy scale for which the value of the limit violates unitarity (and thus EFT model isn't valid)

- Vector boson scattering first observed during Run 2 of the LHC
- Several channels, each giving access to different quartic couplings
- Interpretation of the results using Effective Field Theory

- To do: global fit using several channels for simultaneous constraint of dim-8 operators
 - Status: preliminary studies, such as W[±]W[±]jj/WZjj

- To do: ultimate goal is the study of $V_L V_L \rightarrow V_L V_L$
 - Status: (simple cut-based) studies indicate a future observation at HL-LHC
 - Polarized inclusive VV production: see next talk

Observation of VVjj by ATLAS

WW: Phys. Rev. Lett. 123 (2019) 161801

- WZ: Phys. Lett. B 793 (2019) 469
- Ζγ: <u>JHEP 07 (2017) 107</u>
- ZZ: <u>Nature Phys. 19 (2023) 237</u>

Observation of VVjj by CMS WW and WZ: <u>PLB 809 (2020) 135710</u> Ζγ: <u>PRD 104 (2021) 072001</u>

EFT interpretation of W[±]W[±]jj/WZjj by ATLAS: ATL-PHYS-PUB-2023-002