Additional Higgs Bosons near 95 and 650 GeV in the NMSSM

U. Ellwanger, IJClab Orsay

C. Hugonie, LUPM Montpellier

based on arXiv:2309.07838

IRN Terascale, Marseille

October 26, 2023

General Remarks

- A large number of searches for phenomena (excesses) beyond the Standard Model have been performed at the LHC and elsewhere.
- One has to expect \geq 2 σ deviations for \sim 5 % of all search cannels.
- Such deviations can indicate statistical fluctuations, or hints for physics beyond the Standard Model (if the significance increases with more data in the future) impossible to tell a priori.
- It is interesting to verify which combinations of $\geq 2 \sigma$ deviations can originate from which model beyond the SM.

Possible signals for an extended Higgs sector

1) At \sim 95 GeV

An old story from LEP (combining ALEPH, DELPHI, L3 and OPAL), $e^+ + e^- \rightarrow Z^* \rightarrow Z + (H \rightarrow b\bar{b})$:

→ A 2 σ excess around 95 GeV, corresponding to (from Cao et al, 1612.08522) $\mu_{bb}^{LEP} \equiv C_V(H_1)^2 \times \frac{BR(H_1 \rightarrow b\bar{b})}{BR(H_{SM}^{95} \rightarrow b\bar{b})} = 0.117 \pm 0.057$

 H_1 : an extra scalar near 95 GeV; $C_V(H_1)$: its reduced coupling to Z/W; H_{SM}^{95} : a scalar at 95 GeV with SM-like couplings

1) 95 GeV ff, $pp \rightarrow H \rightarrow \gamma \gamma$

CMS-PAS-HIG-20-002:

ATLAS-CONF-2023-035:

 \rightarrow A 2.9 σ excess (local) at 95 GeV

 \rightarrow A 1.7 σ excess (local) at 95 GeV

Combination, from Biekötter et al, arXiv:2306.03889:

$$\mu_{\gamma\gamma}^{LHC} = \frac{\sigma(gg \rightarrow H_1 \rightarrow \gamma\gamma)}{\sigma(gg \rightarrow H_{SM}^{95} \rightarrow \gamma\gamma)} = 0.24^{+0.09}_{-0.08}$$

 \rightarrow A 3.2 σ excess (local) at 95 GeV

1) 95 GeV ff, $pp \rightarrow H \rightarrow \tau \tau$ CMS-HIG-21-001:

 \rightarrow A 3.1 σ excess (local) around 100 GeV

$$\mu_{\tau\tau}^{LHC} = \frac{\sigma(gg \to H_1 \to \tau\tau)}{\sigma(gg \to H_{SM}^{95} \to \tau\tau)} = 1.38^{+0.69}_{-0.55}$$

2) 650 GeV,
$$pp \rightarrow X \rightarrow (H_{125} \rightarrow \gamma \gamma) + (Y \rightarrow b\bar{b})$$

CMS arXiv:2310.01643:

 \rightarrow A 3.8 σ excess (local) is observed for $m_X = 650$ GeV and $m_Y \sim 95$ GeV

$$\sigma_{bb\gamma\gamma}=\sigma(gg
ightarrow X_{650}
ightarrow(Y
ightarrow bar{b})+(H_{SM}
ightarrow\gamma\gamma))=0.35^{+0.17}_{-0.13}$$
 fb

2) 650 GeV ff

However: CMS arXiv:2106.10361, $pp \rightarrow X \rightarrow (Y \rightarrow bb) + (H_{125} \rightarrow \tau \tau)$:

The Higgs Sector of the CP-conserving NMSSM:

- 3 CP-even scalars: H_S , H_{SM} , H where $H_S \simeq$ singlet-like, $H_{SM} \simeq$ SM-like, H \simeq MSSM-like
- 2 CP-odd scalars: A_S , A where $A_S \simeq$ singlet-like, A \simeq MSSM-like
- 1 complex charged H^{\pm}

H, A and H^{\pm} form a nearly degenerate SU(2) doublet with masses \geq 400 GeV due to constraints on $M_{H^{\pm}}$ from $b \rightarrow s + \gamma$ and direct searches.

 H_S is a candidate for H_1 at 95 GeV H is a candidate for X near 650 GeV

Scan of the NMSSM parameter space

- NMSSMTools-6.0.0: Impose constraints from SM Higgs mass and couplings, b-physics, dark matter detection cross sections, \sim 20 BSM Higgs searches
- Require $M_{H_S} = 95.4 \pm 3$ GeV (allowing for a theoretical uncertainty of 3 GeV)
- M_H in the range 650 \pm 25 GeV (in CMS 2310.01643, M_X is given in steps of 650 \pm $n \times$ 50 GeV)
- Excesses described by μ_{bb}^{LEP} , $\mu_{\gamma\gamma}^{LHC}$, $\sigma_{bb\gamma\gamma}$ within the 2σ ranges
- But: fits to $\mu_{\tau\tau}^{LHC}$ are left aside; the necessary couplings of H_{95} to $\tau\tau$ would require a large mixing angle $H_{SM} H_{95}$ which is in conflict with the SM-like couplings of H_{SM}
- Constraints on σ_{bbττ} ≡ pp → X → (H₉₅ → bb) + (H₁₂₅ → ττ) imply upper bounds on σ_{bbγγ} since H₁₂₅ → ττ and H₁₂₅ → γγ are related by a factor ~ 30

Allowed Points in the NMSSM parameter space

 $\mu_{bb}^{LEP} \sim 0.01 - 0.02$ (left), $\mu_{\gamma\gamma}^{LHC} \sim 0.09 - 0.13$ (right) as function of M_{H_3} . μ_{bb}^{LEP} and $\mu_{\gamma\gamma}^{LHC}$ are near their lower 2 σ boundaries.

The larger is M_{H_3} , the larger has to be the $BR(H_{95} \rightarrow b\bar{b})$ in order to keep $\sigma_{bb\gamma\gamma}$ large enough. This reduces the $BR(H_{95} \rightarrow \gamma\gamma)$ and thus $\mu_{\gamma\gamma}^{LHC}$ on the r.h.s.

The coloured dots here and the subsequent figures denote six benchmark points.

Allowed Points in the NMSSM parameter space

Left: $\sigma_{bb\gamma\gamma} \sim 0.09 - 0.1$ fb as function of M_{H_3} , near its lower 2σ boundary.

Right: $\sigma_{bb\tau\tau}$ as function of M_{H_3} , limited from above by constraints from the search by CMS for $pp \to X \to (Y \to bb) + (H_{125} \to \tau\tau)$

Predictions for $ggF \rightarrow H_{650} \rightarrow t\bar{t}$ (left) and $\sigma(ggF \rightarrow H_{650} \rightarrow H_{95}H_{95} \rightarrow b\bar{b}\gamma\gamma)$ (right)

Left: Coupling strength modifier $g_{H_3tt} \sim 0.44 - 0.52$ as a function of the heavy scalar boson mass M_{H_3} . (Upper limits from CMS arXiv:1908.01115: ~ .735. Similar results hold for the CP-odd pseudoscalar A_2 .)

Right: $\sigma(ggF \rightarrow H_{650} \rightarrow H_{95}H_{95} \rightarrow b\bar{b}\gamma\gamma) \sim 0.04 - 0.08$ fb, no search yet

Predictions for $\sigma(ggF \rightarrow A_2 \rightarrow Z + (H_{SM} \rightarrow b\bar{b}))$ (left) and $\sigma(ggF \rightarrow A_2 \rightarrow (Z \rightarrow \ell\ell) + (H_{95} \rightarrow b\bar{b})))$ (right)

- The cross section into $Z + H_{95}$ is 30-40 times larger than the cross section into $Z + H_{SM}$
- Both cross sections are factors of 20 (for Z + H_{SM}) or 5 (for Z + H₁) below present limits from ATLAS(arXiv:2207.00230) and CMS(arXiv:1903.00941, arXiv:1911.03781).

Predictions for $\sigma(pp \rightarrow tbH^{\pm}) \times Br(H^{\pm} \rightarrow tb)$

- Recent searches: CMS in arXiv:2001.07763 (35.9 fb⁻¹), ATLAS in arXiv:2102.10076 (139 fb⁻¹), for $M_{H^{\pm}} \sim 600 - 650$ GeV: $\sigma(pp \to tbH^{\pm}) \times Br(H^{\pm} \to tb) < 150$ fb
- NMSSM: 30 ± 8 fb.

Conclusions

- In the NMSSM it is possible to explain simultaneously four hints for H_{95} , including a hint for H_{650} with a mass in the 625 640 GeV range:
 - From ${\cal H}_{95}
 ightarrow b ar{b}$ at LEP ($\sim 2\,\sigma$)
 - From ${\cal H}_{95}
 ightarrow \gamma \gamma$ at CMS ($\sim 2.9\,\sigma)$
 - From $H_{95} \rightarrow \gamma \gamma$ at ATLAS (~ 1.7 σ ; combined: ~ 3.2 σ)
 - From $ggF \rightarrow H_{650} \rightarrow (H_{95} \rightarrow b\bar{b}) + (H_{SM} \rightarrow \gamma\gamma)$ at CMS (~ 3.8 σ)
- However: An excess in $H_{95} \rightarrow \tau \tau$ cannot be described simultaneously
- Improved sensitivities in complementary search channels can help to test the corresponding parameter space of the NMSSM