

Searches for violation of Lorentz invariance with tt dilepton final state at CMS

IRN Terascale, Marseille - 25/10/2023

based on **CMS PAS TOP-22-007** Nicolas Chanon - IP2I Lyon, CNRS/IN2P3 (France)

Searches for violation of Lorentz invariance with tt CMS-PAS-TOP-22-007

Available on the CERN CDS information server

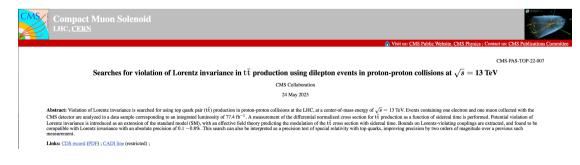
CMS PAS TOP-22-007

CMS Physics Analysis Summary

Contact: cms-pag-conveners-top@cern.ch

2023/05/23

Searches for violation of Lorentz invariance in t production using dilepton events in proton-proton collisions at $\sqrt{s} = 13 \text{ TeV}$


- Public page:

Document:

https://cms-results.web.cern.ch/cms-results/public-results/ preliminary-results/TOP-22-007/index.html

Public since LHCP23 conference

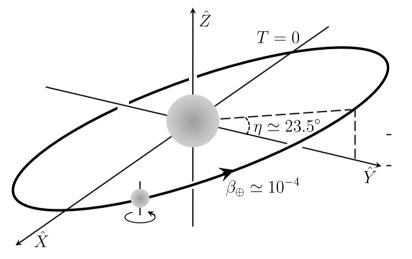
http://cds.cern.ch/record/2859658?In=en

The CMS Collaboration

Abstract

Violation of Lorentz invariance is searched for using top quark pair (tt̄) production in proton-proton collisions at the LHC, at a center-of-mass energy of $\sqrt{s} = 13$ TeV. Events containing one electron and one muon collected with the CMS detector are analyzed in a data sample corresponding to an integrated luminosity of 77.4 fb⁻¹. A measurement of the differential normalized cross section for tt̄ production as a function of sidereal time is performed. Potential violation of Lorentz invariance is introduced as an extension of the standard model (SM), with an effective field theory predicting the modulation of the tt̄ cross section with sidereal time. Bounds on Lorentz-violating couplings are extracted, and found to be compatible with Lorentz invariance with an absolute precision of 0.1–0.8%. This search can also be interpreted as a precision test of special relativity with top quarks, improving precision by two orders of magnitude over a previous such measurement.

tt cross section under Lorentz-violation

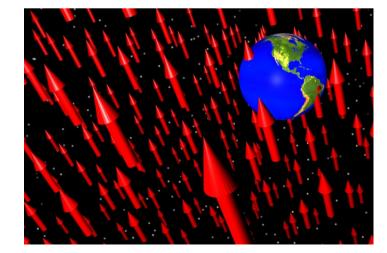

Lorentz transformation:

 $x^{\mu} \mapsto x'^{\mu} = \Lambda^{\mu}_{\ \nu} x^{\nu}$

- Rotations
- Lorentz boosts

Lorentz-violating Standard Model Extension (SME):

- Motivated by String theory or Loop quantum gravity
- Add all Lorentz-violating operators to the SM Lagrangian

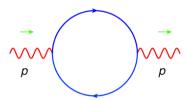


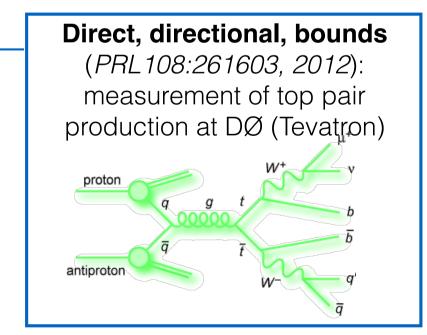
$$L_{\rm SME} = \frac{1}{2} i \bar{\psi} (\gamma^{\nu} + c^{\mu\nu} \gamma_{\mu} + d^{\mu\nu} \gamma_{5} \gamma_{\mu}) \overleftrightarrow{\partial_{\nu}} \psi - m_{\rm t} \bar{\psi} \psi$$

SME coefficients: constant matrices (Lorentz-violating) Indicate **preferential directions in spacetime**

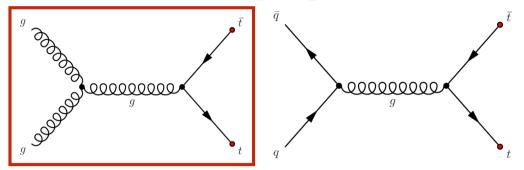
Report the measurement in the Sun-centered frame:
CMS frame is rotating daily around the earth Z-axis,
=> modulation of the top-antitop cross section with sidereal time

Rotation period of the earth lasts ~23h 56min 4s (UTC time ~UNIX time), or 24h, 86400 s (sidereal time)

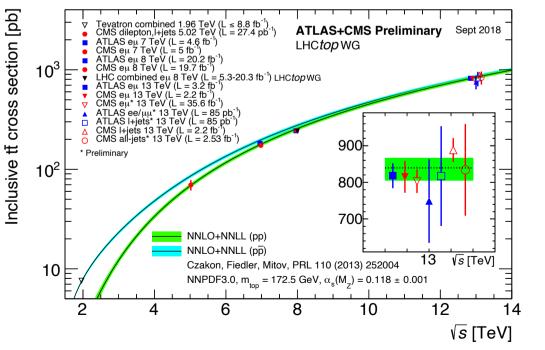

Lorentz-violation with top quarks: existing bounds


Rev.Mod.Phys. 83: 11 (2011)

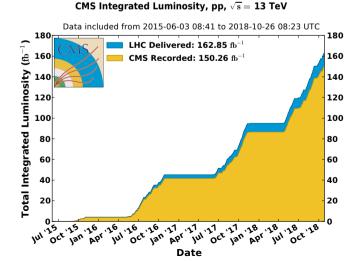
- Lorentz-violation tested in many sectors,
- But only one actual measurement with top quarks at collider: precision O(10%)


Combination	Result	System	Ref.
$ c_t $	$< 1.6 \times 10^{-7}$	Astrophysics	[50]*
$(c_Q)_{XX33}$	$-0.12 \pm 0.11 \pm 0.02$	$t\bar{t}$ production	[256]
$(c_Q)_{YY33}$	$0.12 \pm 0.11 \pm 0.02$	"	[256]
$(c_Q)_{XY33}$	$-0.04 \pm 0.11 \pm 0.01$	"	[256]
$(c_Q)_{XZ33}$	$0.15 \pm 0.08 \pm 0.02$	"	[256]
$(c_Q)_{YZ33}$	$-0.03 \pm 0.08 \pm 0.01$	"	[256]
$(c_U)_{XX33}$	$0.1 \pm 0.09 \pm 0.02$	"	[256]
$(c_U)_{YY33}$	$-0.1 \pm 0.09 \pm 0.02$	"	[256]
$(c_U)_{XY33}$	$0.04 \pm 0.09 \pm 0.01$	"	[256]
$(c_U)_{XZ33}$	$-0.14 \pm 0.07 \pm 0.02$	"	[256]
$(c_U)_{YZ33}$	$0.01 \pm 0.07 \pm < 0.01$	"	[256]
d_{XX}	$-0.11 \pm 0.1 \pm 0.02$	"	[256]
d_{YY}	$0.11 \pm 0.1 \pm 0.02$	"	[256]
d_{XY}	$-0.04 \pm 0.1 \pm 0.01$	"	[256]
d_{XZ}	$0.14 \pm 0.07 \pm 0.02$	"	[256]
d_{YZ}	$-0.02 \pm 0.07 \pm < 0.01$	"	[256]

Indirect, isotrope, bound (*Phys. Rev. D 97, 125016(2018)*): from top-quark loop correction to photon propagator, using astrophysics photons



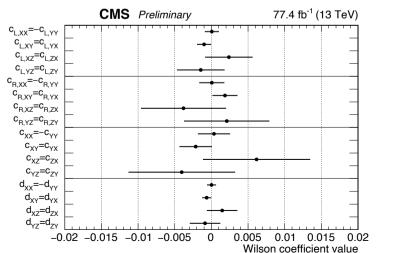
The LHC: a top quark factory

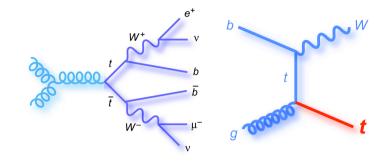

From Tevatron to LHC, x100 increase in cross section:

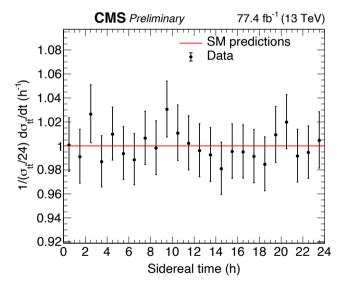
- Gluon fusion mechanism is now dominant,
- Higher gluon parton density function in the proton at the LHC
- Higher center-of-mass energy

Integrated luminosity

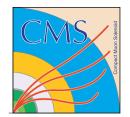
- 5 fb⁻¹ at DØ analysis, 77 fb⁻¹ in this analysis



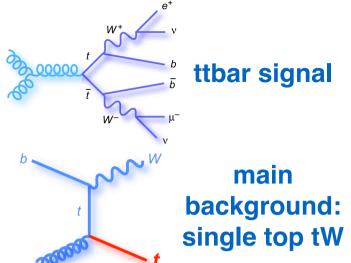

Analysis strategy

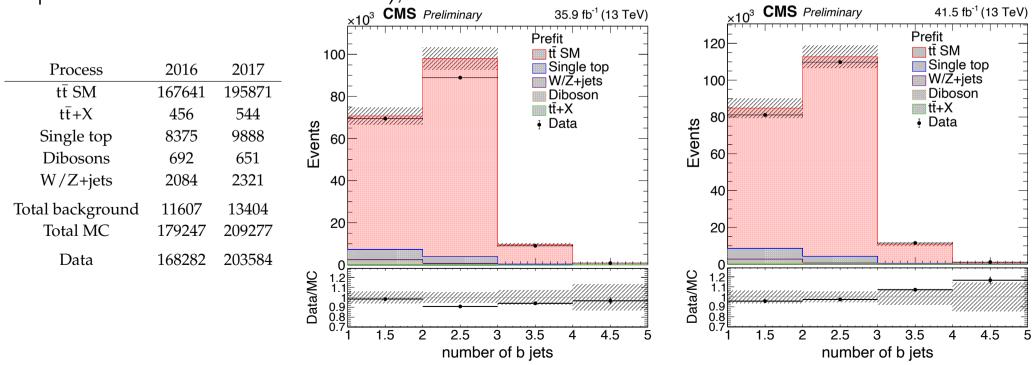

1) Discriminate between $t\bar{t}$ and SM backgrounds

2) Evaluate relevant corrections and systematic uncertainties as a function of sidereal time


3) Measure **normalized differential cross section** with sidereal time

4) Extract Lorentz-violating SME coefficients

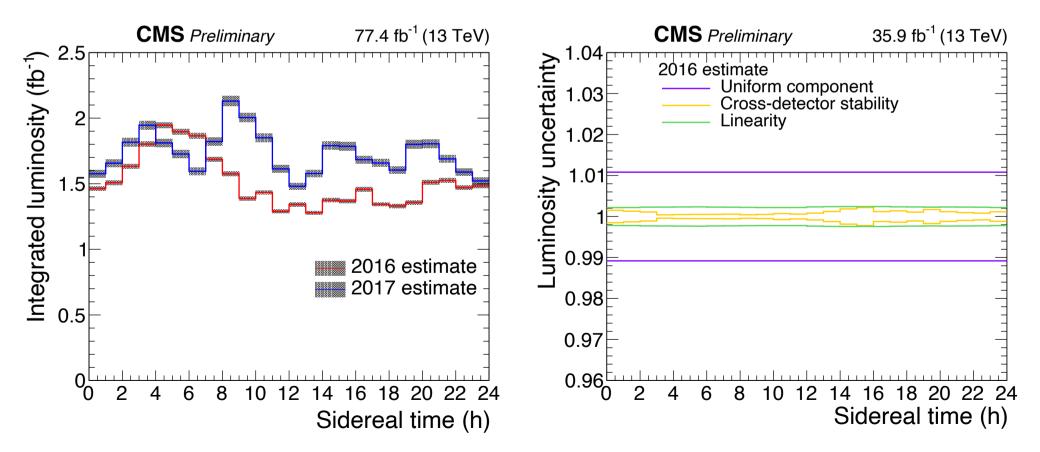

Employing tt dilepton final state


Selection:

- Dilepton final state: **e**µ (dilepton + single lepton triggers)
- Leading lepton p_T >25 GeV, subheading p_T >20 GeV
- **≥ 2 jets** with p_T >30 GeV and $|\eta| < 2.4$
- Among which ≥ 1 b jet (deepCSV tagger)

Discriminant observable: number of b jets (good

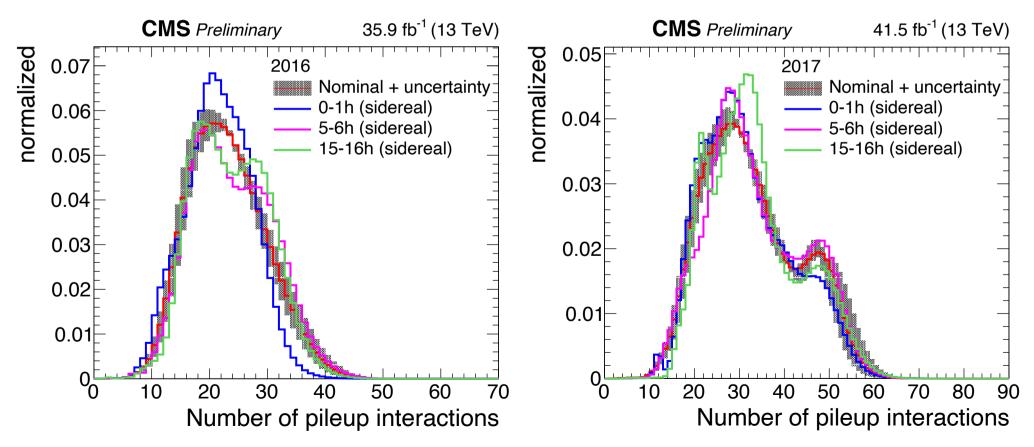
separation between ttbar and tW),



Integrated luminosity with sidereal time

Integrated luminosity:

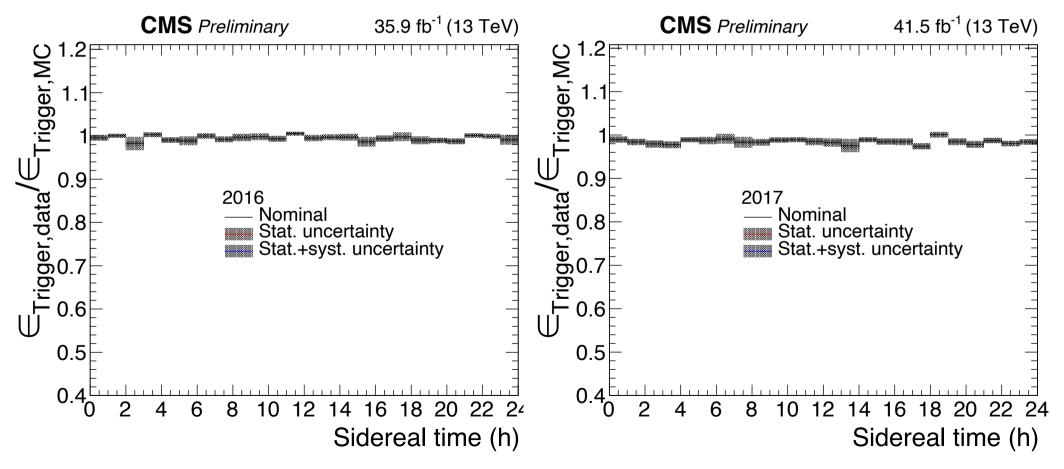
- Integrated luminosity can vary up to 20% per sidereal time bin
- Scale simulation yield for each sidereal time bin
- **Re-estimate luminosity uncertainties** as a function of time: cross-detector stability, luminometer linearity response


N. Chanon - Searches for violation of Lorentz invariance with ttbar at CMS - IRN Terascale, Marseille - 8

Pileup with sidereal time

Pileup distribution:

- Nominal **pileup profile and associated uncertainty** (from the cross section for minimum bias events) does not cover for the pileup profile in time bins
- For each sidereal time bin: reweight pileup distribution and assign corresponding uncertainty

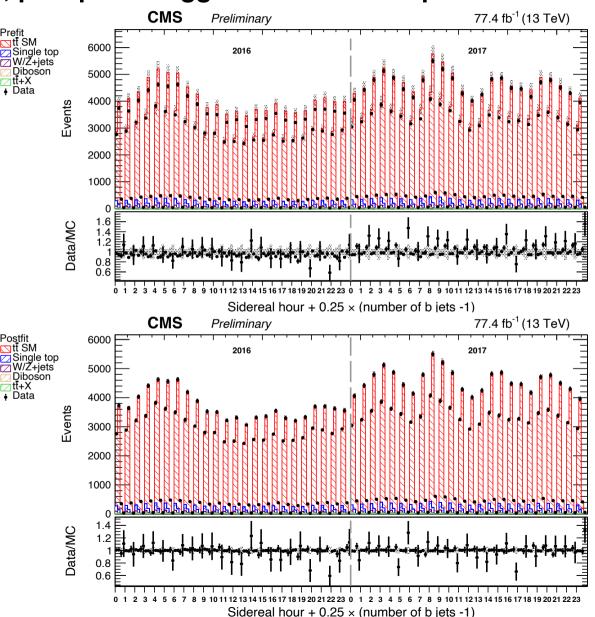

N. Chanon - Searches for violation of Lorentz invariance with ttbar at CMS - IRN Terascale, Marseille - 9

Trigger efficiency with sidereal time

Data/simulation differences in dilepton trigger efficiencies:

- Estimated using p_T^{mis} trigger in events with ≥ 1 b jet
- **Uncertainties** estimated from partitions of the data: uncertainty arising from the number of jets, and run era dependency

N. Chanon - Searches for violation of Lorentz invariance with ttbar at CMS - IRN Terascale, Marseille - 10


Fitting the normalized differential XS

Data

Reminder: Integrated lumi, pileup and trigger corrections depend on time

Fit method

- Profile likelihood method using the LHC test-statistic
- Fit of 24 parameters of interest (POIs): 23 fractions + the average signal strength
- Reconstructed and particle-level sidereal time are identical: diagonal response matrix
- Under the SM hypothesis, same expected prediction in each bin
- The normalised differential cross section reduces to: $\sigma_i / \sigma_{avg} = \mu_i / \mu_{avg}$ (which are the POIs)

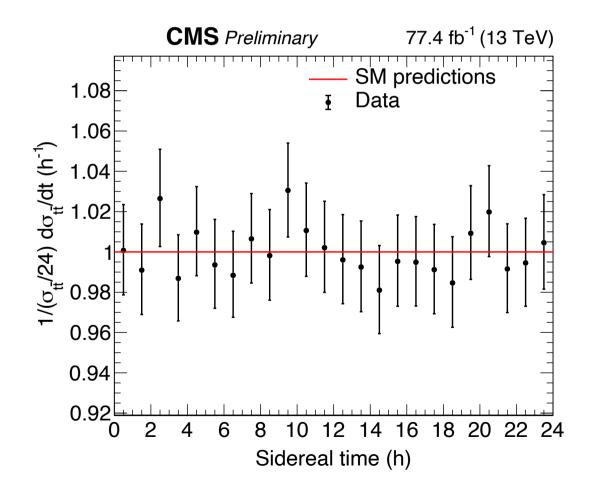
Uncertainties and their correlation

Re-estimated as a function of sidereal time: correlated in sidereal time

Experimental syst. for which dependency in sidereal time is unknown: uncorrelated in sidereal time

SM theory and background normalisation uncertainties: uniform (and correlated) in sidereal time

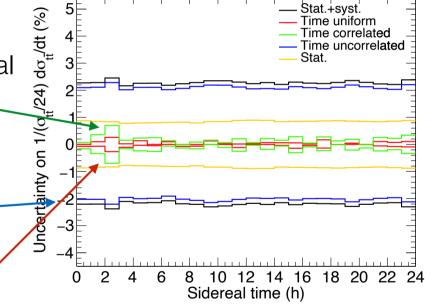
MC stat.: correlated in sidereal time


Systematic uncertainty source	Correlation 2016–2017	Correlation time bins	Magnitude
Flat luminosity, year-to-year correlated part	100%	100%	0.6% (2016), 0.9% (2017)
Flat luminosity, year-to-year uncorrelated part	0%	100%	0.9% (2016), 1.4% (2017)
Time-dependent luminosity stability	0%	100%	0.2% (2016), 0.4% (2017)
Time-dependent luminosity linearity	0%	100%	0.2% (2016), 0.4% (2017)
Time-dependent pileup reweighting	100%	100%	0.3–5%
Time-dependent trigger efficiency, syst. component	0%	100%	0.5–1%
Time-dependent trigger efficiency, stat. component	0%	0%	0.5%
L1 ECAL prefiring	100%	0%	0.5%
Electron reconstruction	100%	0%	0.4%
Electron identification	100%	0%	1.2–2.2%
Muon identification, syst. component	100%	0%	0.3%
Muon identification, stat. component	0%	0%	0.5%
Muon isolation, syst. component	100%	0%	< 0.1%
Muon isolation, stat. component	0%	0%	0.2%
Phase-space extrapolation of lepton isolation	100%	100%	0.5–1%
Jet energy scale, year-to-year correlated part	100%	0%	0.8%
Jet energy scale, year-to-year uncorrelated part	0%	0%	1.4%
Parton flavor impact on jet energy scale	100%	100%	1.1%
b tagging	0%	0%	2–4%
Matrix element scale	100%	100%	0.3–6%
PDF+ $\alpha_{\rm S}$	100%	100%	0.1-0.4%
Initial- & final-state radiation scale	100%	100%	1–5%
Top quark $p_{\rm T}$	100%	100%	0.5–2.5%
Matrix element-parton shower matching	100%	100%	0.7%
Underlying event tune	100%	100%	0.2%
Color reconnection	100%	100%	0.3%
Top quark mass	100%	100%	0.5–3%
Single top quark cross section	100%	100%	30%
$t\bar{t}+X$ cross section	100%	100%	20%
Diboson cross section	100%	100%	30%
W/Z+jets cross section	100%	100%	30%
tīt cross section *	100%	100%	4%
Single top quark time modulation *	100%	100%	2%
MC statistical uncertainty	0%	100%	0.1–1%

Normalized differential XS: result

Direct fit of normalised differential ttbar cross section

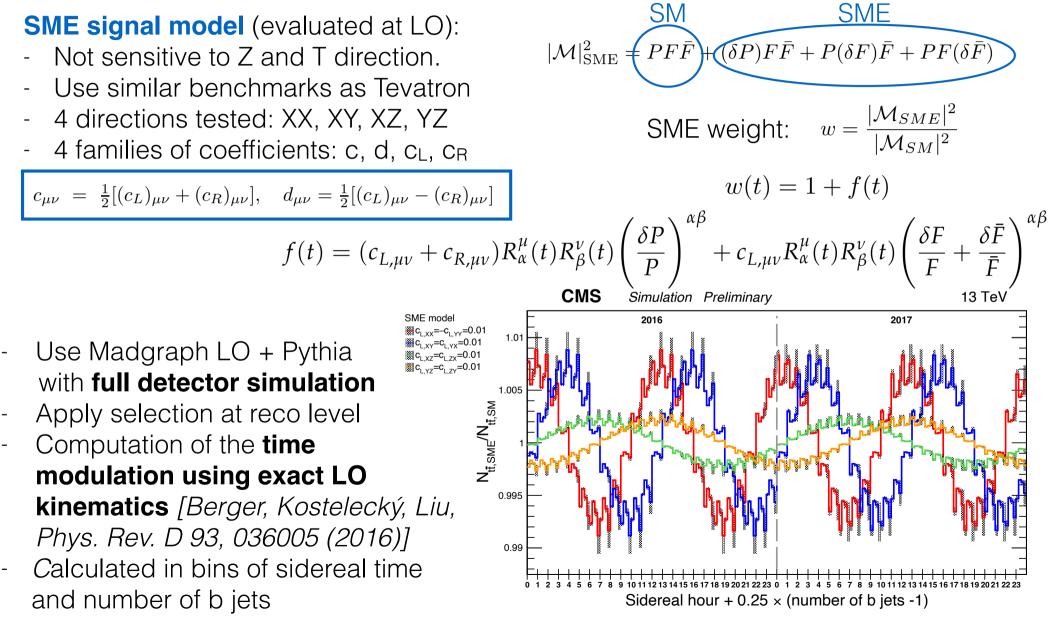
- Uncertainty is around 2.2% in each time bin
- Statistical uncertainty accounts for ~0.9%
- Goodness-of-fit (saturated model): p-value=0.92


Uncertainty breakdown

Uncertainty breakdown bin by bin: in each sidereal time bin, freeze groups of uncertainties in the fit and calculate the resulting uncertainty by subtracting to the total in quadrature.

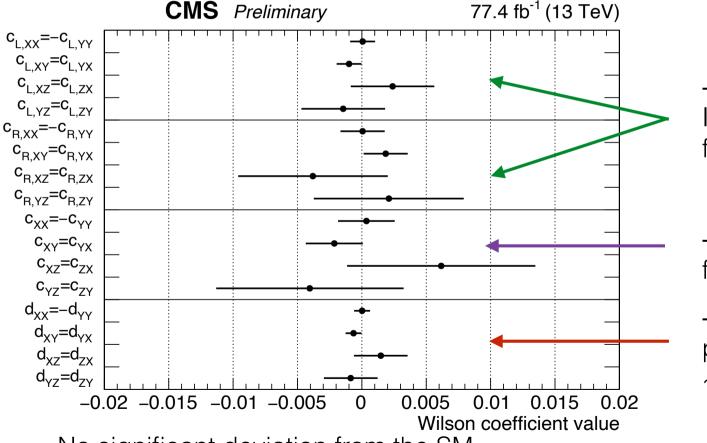
Treatment of the systematics with sidereal time: Uncertainty in pileup, luminosity stability and

- linearity, trigger: evaluated as a function of sidereal time, treated as **correlated: subdominant**
- Other experimental systematics treated as uncorrelated, to let the fit find their impact on each time bin in data: dominant
- SM theory, background norm, other luminosity uncertainties treated as uniform: cancel almost completely in the ratio
- Cancellation of uncertainties is imperfect because of remaining correlations



77.4 fb⁻¹ (13 TeV)

Lorentz-violating signal model (SME)



Bounds on the SME coefficients

Fit of each coefficient individually, while coefficients corresponding to the three other directions in a family (cL, cR, c, d) are left floating in the fit

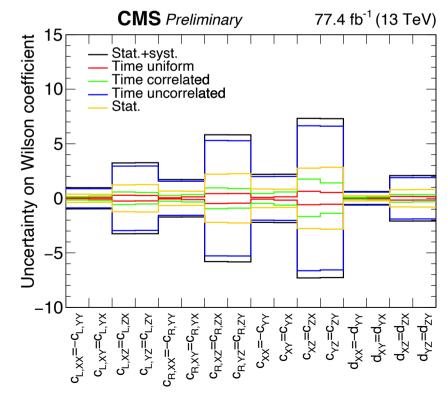
- Goodness-of-fit p-value is 0.98

- cL, cR coefficients:

Improved precision by a factor ~20-50 relative to D0

- **c coefficients:** measured for the first time
- d coefficients: Improved
 precision by a factor up to
 ~100 relative to D0

- No significant deviation from the SM


- Special relativity tested with precision 0.1-0.8% using top quarks at the LHC

Uncertainty breakdown

Similar conclusions as in the differential fit

- Largest uncertainty is the **time-uncorraleted component:** most exp. syst. have an individual uncertainty per sidereal time bin
- Statistical uncertainty is about 1/3 of total stat+syst uncertainty
- Time-correlated uncertainties follow. It includes an uncertainty on single top process in the SME.
- Usual time-uniform systematics have small impact

Conclusions and perspectives

Summary:

- Performed the **first search** for violation of **Lorentz** invariance with **ttbar at the LHC**, within the context of the **SME**
- Measured differential normalised cross section with sidereal time
- Measured SME coefficients in XX, XY, XZ, YZ directions for cL, cR, c, d families
- Improvement by a factor up to 100 on the SME coefficients
- Special relativity tested at **0.1-0.8% precision level** with top quarks at the LHC
- CMS Public Analysis Summary TOP-22-007, to be published

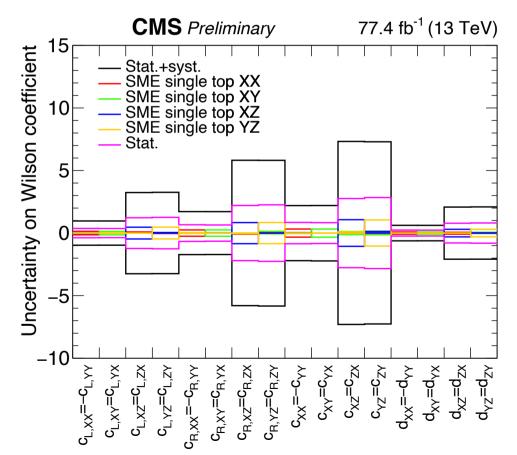
Perspectives:

- Another factor of 5-10 improvement expected at the HL-LHC, and a factor 100 at the FCC-hh [Carle, Chanon, Perriès, Eur.Phys.J.C 80 (2020) 2, 128]

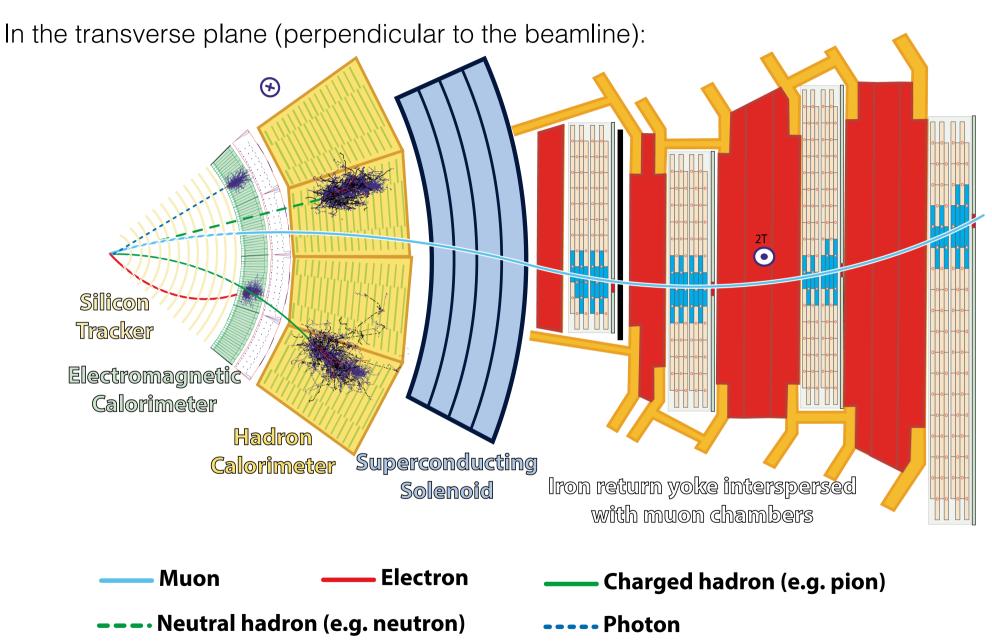
Thanks for your attention

Back-up slides

Comparison with SM expectations

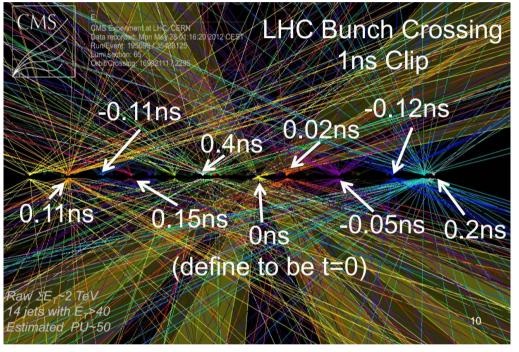

- Alternative fit: Fit of each Wilson individually, others set to SM
- Correlation between coefficients of different directions is 0-4%

Wilson	SM expected Others fixed to SM	Data Others fixed to SM	SM expected Others floating	Data Others floating
coefficient	(10^{-3} units)	(10^{-3} units)	(10^{-3} units)	(10^{-3} units)
$c_{L,XX} = -c_{L,YY}$	[-0.97; 0.97]	[-0.91; 1.03]	[-0.97; 0.97]	[-0.91; 1.03]
$c_{L,XY} = c_{L,YX}$	[-0.97; 0.97]	[-1.94; -0.01]	[-0.97; 0.97]	[-1.96; -0.03]
$c_{L,XZ} = c_{L,ZX}$	[-3.25; 3.25]	[-0.91; 5.58]	[-3.25; 3.25]	[-0.86; 5.63]
$c_{L,YZ} = c_{L,ZY}$	[-3.26; 3.26]	[-4.66; 1.83]	[-3.27; 3.27]	[-4.7; 1.81]
$c_{R,XX} = -c_{R,YY}$	[-1.71; 1.71]	[-1.65; 1.79]	[-1.71; 1.71]	[-1.66; 1.77]
$c_{R,XY} = c_{R,YX}$	[-1.72; 1.72]	[0.11; 3.53]	[-1.72; 1.72]	[0.14; 3.56]
$c_{R,XZ} = c_{R,ZX}$	[-5.81; 5.82]	[-9.52; 2.1]	[-5.82; 5.82]	[-9.61; 2.01]
$c_{R,YZ} = c_{R,ZY}$	[-5.84; 5.84]	[-3.79; 7.86]	[-5.84; 5.84]	[-3.74; 7.91]
$c_{XX} = -c_{YY}$	[-2.19; 2.19]	[-1.78; 2.62]	[-2.19; 2.19]	[-1.85; 2.55]
$c_{XY} = c_{YX}$	[-2.19; 2.19]	[-4.27; 0.15]	[-2.19; 2.19]	[-4.36; 0.07]
$c_{XZ} = c_{ZX}$	[-7.25; 7.25]	[-1.35; 13.27]	[-7.26; 7.25]	[-1.15; 13.48]
$c_{YZ} = c_{ZY}$	[-7.29; 7.29]	[-11.16; 3.35]	[-7.29; 7.29]	[-11.31; 3.24]
$d_{XX} = -d_{YY}$	[-0.62; 0.62]	[-0.6; 0.64]	[-0.62; 0.62]	[-0.6; 0.64]
$d_{XY} = d_{YX}$	[-0.62; 0.62]	[-1.25; -0.02]	[-0.62; 0.62]	[-1.27; -0.03]
$d_{XZ} = d_{ZX}$	[-2.09; 2.09]	[-0.65; 3.52]	[-2.09; 2.09]	[-0.62; 3.55]
$d_{YZ} = d_{ZY}$	[-2.1; 2.1]	[-2.93; 1.24]	[-2.1; 2.1]	[-2.95; 1.23]



Uncertainty breakdown

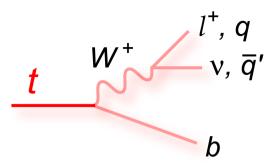
- Formula for single top production in presence of non-null c or d SME coefficients are not known
- Evaluate an uncertainty arising from top quark decay in the SME, using single top processes
- Small impact on the total uncertainty

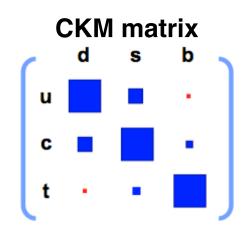


The CMS detector

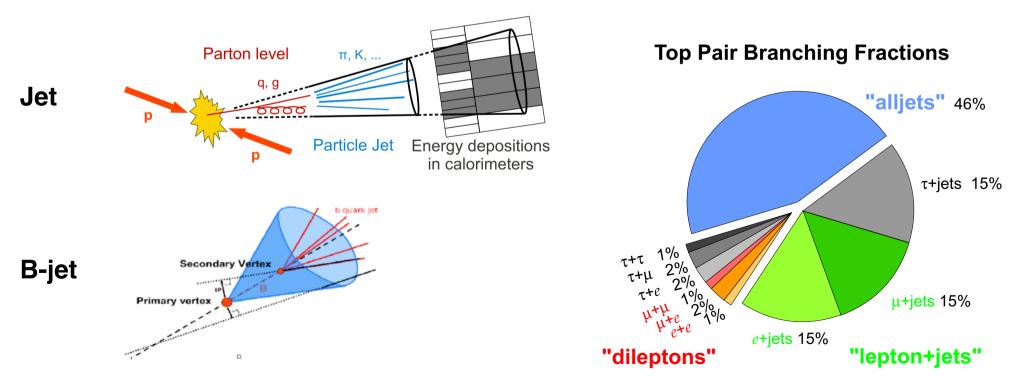
Challenge: pileup interactions

Higher instantaneous luminosity means higher number of (uninteresting, low momentum) **additional collisions per bunch crossing**

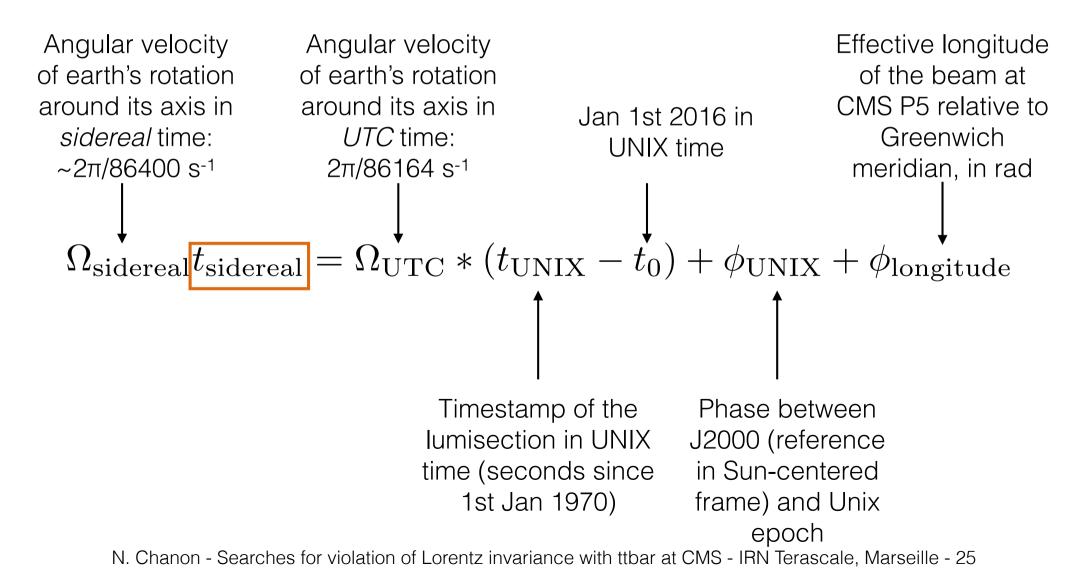

- In-time pileup : additional collisions in the same bunch crossing (1 bunch crossing every 25 ns)
- Out-of-time pileup: additional collisions in the previous or next bunch crossing



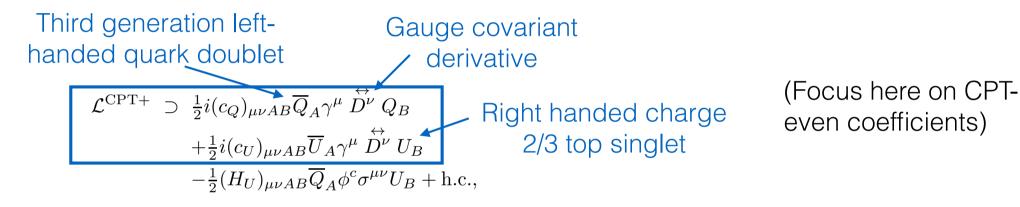
CMS Average Pileup


Top quark decay

Top quark decay


- The top quark undergoes electroweak decay to Wb before hadronizing
- W decays via $W \rightarrow Iv$ or $W \rightarrow qq'$, leading to to b + leptons or jets signatures

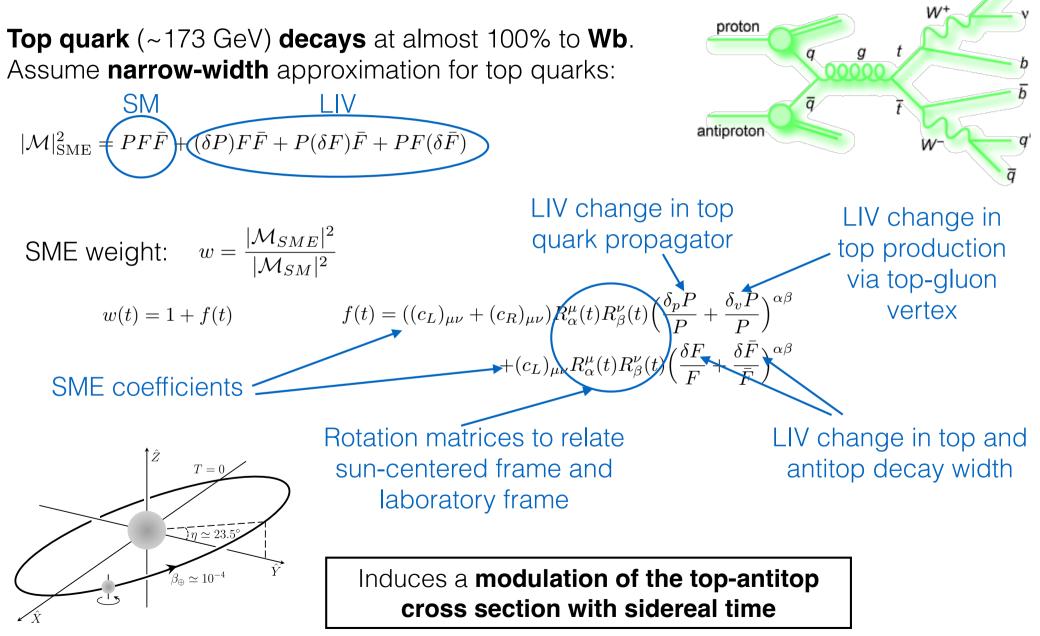
Translating UNIX to sidereal time


UTC time (~UNIX time): rotation period of the earth lasts ~23h 56min 4s (UTC) **Sidereal time:** rotation period of the earth is defined as 24h, 86400 s (sidereal)

Top quark sector in the SME

Berger, Kostelecký, Liu, Phys. Rev. D 93, 036005 (2016)

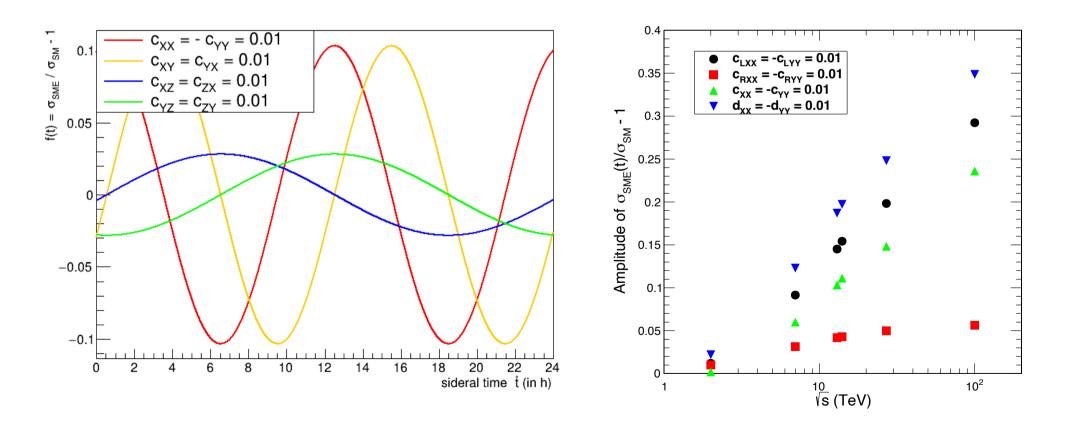
LIV lagrangian related to top quark:



- SME coefficients **c**_{µv} are **violating particle Lorentz invariance**
- $c_{\mu\nu}$ trace is Lorentz-invariant, and its antisymmetric part can be absorbed elsewhere in the Lagrangian: consider $c_{\mu\nu}$ as symmetric and traceless

Define:
$$c_{\mu\nu} = \frac{1}{2}[(c_L)_{\mu\nu} + (c_R)_{\mu\nu}], \quad d_{\mu\nu} = \frac{1}{2}[(c_L)_{\mu\nu} - (c_R)_{\mu\nu}]$$

Top pair production in the SME


Berger, Kostelecký, Liu, Phys. Rev. D 93, 036005 (2016)

Higher center-of-mass energies

Carle, Chanon, Perriès, Eur.Phys.J.C 80 (2020) 2, 128

- Compare f(t) in p-p collisions at several center-of-mass energy (assuming CMS reference frame), and for several benchmark coefficients
- The amplitude of f(t) increases with the energy (comes mostly from the matrix element)

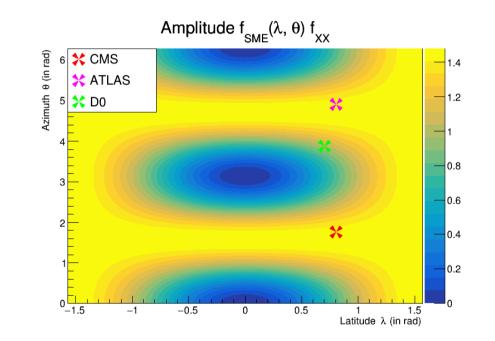
Expected sensitivity at the LHC and future colliders

Carle, Chanon, Perriès, Eur.Phys.J.C 80 (2020) 2, 128

Benchmarks:

- **D0:** Recomputed expected sensitivity for 5.3 fb-1 of p-pbar collisions at 1.96 TeV
- LHC Run 2: Expected sensitivity for 150 fb-1 of p-p collisions at 13 TeV -
- **HL-LHC:** 3 ab-1 of p-p collisions at 14 TeV (expected to start data taking in 2027)
- HE-LHC: 15 ab-1 of p-p collisions at 27 TeV (option for after HL-LHC, replacing LHC _ magnets in the same tunnel)
- FCC-hh: 15 ab-1 of p-p collisions at 100 TeV (option for after HL-LHC, new magnets and new 100km tunnel)

Expected precision on the top-quark SME coefficients:


	DØ	LHC (Run 2)	HL-LHC	HE-LHC	FCC	
$\Delta c_{LXX}, \Delta c_{LXY}$	1×10^{-1}	7×10^{-4}	2×10^{-4}	2×10^{-5}	5×10^{-6}	
$\Delta c_{LXZ}, \Delta c_{LYZ}$	8×10^{-2}	3×10^{-3}	5×10^{-4}	9×10^{-5}	2×10^{-5}	
$\Delta c_{RXX}, \Delta c_{RXY}$	9×10^{-2}	3×10^{-3}	5×10^{-4}	8×10^{-5}	5×10^{-5}	
$\Delta c_{RXZ}, \Delta c_{RYZ}$	7×10^{-2}	1×10^{-2}	2×10^{-3}	4×10^{-4}	8×10^{-5}	
$\Delta c_{XX}, \Delta c_{XY}$	7×10^{-1}	1×10^{-3}	2×10^{-4}	3×10^{-5}	9×10^{-6}	
$\Delta c_{XZ}, \Delta c_{YZ}$	6×10^{-1}	4×10^{-3}	7×10^{-4}	1×10^{-4}	3×10^{-5}	
$\Delta d_{XX}, \Delta d_{XY}$	1×10^{-1}	6×10^{-4}	1×10^{-4}	2×10^{-5}	8×10^{-6}	
$\Delta d_{XZ}, \Delta d_{YZ}$	7×10^{-2}	2×10^{-3}	4×10^{-4}	8×10^{-5}	2×10^{-5}	
HC Run 2: Ex	C Run 2: Expect 2-3 orders		FCC: Expect 2 more order			
f magnitude i	magnitude improvement wrt		of magnitude improvemer			
•) (depending on the coeff.)			relative to LHC Run 2		

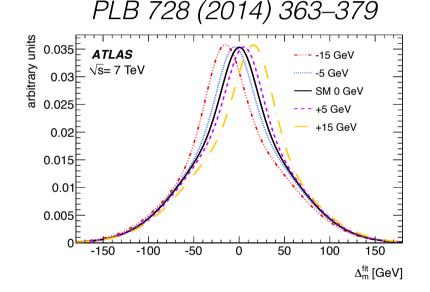
Which collider / experiment?

Carle, Chanon, Perriès, arXiv:1909.01990

Comparison LHC / Tevatron (assuming same center-of-mass energy):

- D0 less sensitive than ATLAS/CMS to cXX or cXY scenario
- D0 more sensitive than ATLAS/CMS to cXZ or cYZ scenario

Equivalent sensitivity at ATLAS or CMS (opposite azimuth in the LHC ring)


A note on top/antitop mass difference

Top/Antitop mass difference

- Particle/antiparticle mass difference is not allowed to elementary particles within local quantum field theories, such as the SME
- Can be allowed in non-local theories with CPT breaking

Experimental method

- Kinematic fit used to reconstruct the top mass in lepton+jets or dilepton decay channels
- Can measure top / antitop mass in separated dataset and combine statistically
- Or can measure simultaneously top and antitop masses

CMS 8 TeV (*PLB 770 (2017) 50–71*):

 $\Delta m_{\rm t} = -0.15 \pm 0.19 ({\rm stat}) \pm 0.09 ({\rm syst}) \,{\rm GeV}$

- Compatible with the SM
- This measurement has not been interpreted in the context of a given BSM model