
Trend and novelty on tools used
for BSM searches at LHC 
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Looking for the less obvious
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Large search program but except the Higgs, nothing new 
so far
à Machine Learning to improve calibration
à Decay not automatic 
à Form of the decay not ‘usual’ 
à Looking for anomalies 
à Machine Learning to help the selection
à Improving background shape 



14Improving b-jet energy determination
➡ Crucial to optimally use highest resolution events to measurement precision - 

excellent estimation of per-object resolution

‣ especially relevant for b-jets/c-jets since as final states for several Higgs analyses (VHbb, VHcc): 
improved energy regression using DNN-based (feed-forward NN) energy regression techniques 

‣ recovers energy loss from escaping neutrinos targeting energy corrections and energy quantiles 

‣ training uses b-jet/c-jet specific kinematic properties to improve reconstruction of jet momentum

➡ Successfully employed b/c-jet energy regression in VH(bb)/VH(cc): significant 
improvement on jet energy scale/resolution  better analysis sensitivity 

CMS-PAS-HIG-20-001 

Comput. Softw. Big Sci. 4, 10 (2020) 

Many Processes in Reality
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Increase PU, irradiation à increase noise etc, and still 
looking for extremely rare processes (di-Higgs 
production + searches)
èConstant need to carry on improving the 

reconstruction

èImproving the understanding of the detector 
thanks to machine learning:

 - Regression method to improve energy measurement
 - Better jet tagging
 - Calibration at the level of jet constituents
 - Improve track reconstruction (mostly HL-LHC)

4Jet tagging techniques and impact on Higgs measurements 
➡ Flavour tagging (FT) represents a critical feature for Higgs to heavy-flavour 

➡ Change of paradigm for CMS Run 2 flavour tagging has paid off

‣ from high-level features (IP, SV, soft-leptons) to low-level observables (PF candidates) 

‣ DeepCSV/DeepFlavour for resolved FT making use of RNN; ParticleNet for boosted FT based 
on point cloud architecture 

‣ more ideas and algorithms to further improve classification performance/robustness being 
developed [CMS DP-2022/050, CMS DP-2022/049, CMS DP-2022/051, CMS-DP-2023-021]

➡ Significant leap in sensitivity in H→cc thanks to ParticleNet tagger performance 
and merged analysis - most stringent constraints on Higgs-charm Yukawa at LHC

Phys. Rev. Lett. 131, 061801 

Anna Benecke

Towards jet  regressionpT

20

change the ?T scale of the jets to match the truth jets, and so the closure in ?T is better than that of the
GSC closure. It is worth noting that while the GSC can instead be applied in a way that corrects the jet ?T

scale, this does not impact the resolution. In a few cases, the jet ?T resolution becomes worse in the lowest
?T bins, but this is also where the ?T nonclosure is most significant, making it di�cult to have an accurate
estimate of the resolution, particularly since the GNNC changes the ?T scale of the jets.

In the 0.2 < |[ | < 0.7 bin, the GNNC has an average improvement in the jet ?T resolution of over 15%, and
maximum improvements of over 25%, when compared with the GSC. Other |[det | bins show similar average
improvements of around 15–25%, with maximum improvements often over 30%, and the improvement
generally becomes more pronounced at higher |[det |, where the resolution improvements are significant,
mostly due to the improvements from the additional detector information. Studies comparing the GNNC
performance with only the GSC observables as inputs find a similar performance to the GSC, indicating
that the improvement in the resolution of GNNC compared with GSC is due to the inclusion of additional
observables. This is made possible by a simultaneous correction that accounts for correlations between
observables. The GNNC provides a larger improvement to the jet energy resolution than the GSC, and so it
is used for the remainder of the paper.
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Figure 8: The jet ?T closure for 0.2 < |[det | < 0.7. The solid line shows the MCJES, the long dashed line shows the
GSC, and the short dashed line shows the GNNC.

4.5.4 Flavour uncertainties

The two flavour-dependence uncertainties in the JES are derived from simulation and account for relative
flavour fractions and di�ering responses to quark- and gluon-initiated jets. The flavour response uncertainty
accounts for the fact that, unlike the quark-initiated jet response R@ , the gluon-initiated jet response R6 is
found to di�er significantly between generators. This uncertainty is defined as

fresponse = 56 (R6,P�����8 � R6,H�����),

where 56 is the fraction of gluon-initiated jets, and R6,P�����8 and R6,H����� are the gluon-initiated jet
response R6 in P����� 8 and H����� respectively. The flavour composition uncertainty accounts for the
fact that the jet response is di�erent for quark- and gluon-initiated jets. This is determined based on the
fraction of gluon-initiated jets 56, where R@ and R6 are the quark and gluon jet responses measured in
P����� 8, and f

5

6
is the uncertainty in 56 in the sample, with the uncertainty defined as

fcomposition = f
5

6

R@ � R6

56R6 + (1 � 56)R@

.
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talk by Margherita

Let’s find
 out more about

 

the advantages 
of ML in 

jet calibr
ation
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12 • Jet  response depends on the 
flavor and the MC generator used


• Additional correction step to 
improve the jet resolution by 6 
different (mostly) uncorrelated 
variables


• With ML you can take correlated 
varaibles and improve the 
performance further!

pT

Phys. Rev. Lett. 131, 061801

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.061801
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No time cut
Seed cut
Seed Ext. cut

The cell ‘time cut’

Cut switched off for E significance greater than xUL to avoid rejecting 
phase space potentially sensitive to Long-Lived-Particle

ATLAS-CONF-2023-042

Next
bunch

crossing
±12.5 ns

Time resolution is good for large 
enough E significance

Suppresses out-of-time 
jets while preserving 

in-time signals
è ~ -60% at

pT=20 GeV

❭Cel ls passing |Ecell|/𝜎E>4 but failing |tcell|<12.5 ns
are also vetoed from being collected as neighbouring cells



The time cut: an example
Ø One event from Run 2

Calorimeter cells

Spurious contributions are 
removed
Signal cluster becomes cleaner

standard
topo-clustering

topo-clustering 
with time cut

ATLAS Public Plots

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArCaloPublicResults2015


Long Lived Particles

6

Detector signatures are 
unconventional, delayed and 
displaced:
• Often similar to noise, pile-up, 
misreconstruction
• Dependent on LLP mass, cτ, <βγ> 
and decay channel

Request:
• Innovative trigger strategies
• Custom reconstruction and 
identification methods
• Sophisticated ML techniques
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ü Sensitivity
• neutral or charged LLP which 

decays within tracker to at least 
one vertex with >= 5 tracks

• Lifetime: ~10 ps - 10 ns

ü Selection
• Relies on reconstruction of 

displaced track and displaced 
vertices from displaced tracks

• Veto on vertices in material
• MET

ü Increase of acceptance is expected 
thanks to the new Si tracker. 
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Long Lived Particles
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R-hadrons: bound state of SUSY & SM colored particles 
Gluinos (split SUSY) or stops (electroweak 
baryogenesis)

HSCP: Measure candidate velocity (β) and mass 
(m = p/βγ) from dE/dx or ToF
Particles can be detected via high ionization.
Anomalously high dE/dx is measured by the 
Inner Tracker.

Neutral or charged LLP 
which decays within 
tracker to at least one 
vertex with many tracks
Searches will benefit 
from Pixel Upgrades

Displaced vertex

HSCP
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DISPLACED VERTICES + JETS

High-pT jet SR and trackless-jet SR 
• Targeting strong and electroweak 

scenarios, respectively 

First limits on RPV EWK SUSY LLP 
production in ATLAS 

Electroweakino masses up to 1.58 TeV 
are excluded for lifetimes of 0.1 ns
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RPV EWK SUSY

LLP

displaced 
vertices 

+ 
multiple 

jets → jet 
triggers

RPV STRONG 
SUSY

Dedicated secondary-vertex 
reconstruction for DVs benefitting from  
dedicated track reconstruction for non-
prompt particles (Large Radius Tracking)

RPV EWK SUSY RPV STRONG 
SUSY

Material map veto removes 
48% of the fiducial volume

arXiv:2301.13866

ATLAS-TDR-030, ITk Pixel TDR

https://arxiv.org/abs/2301.13866


Delay jets + pT
miss , 

Gauge mediated supersymmetry breaking (GMSB)
Rely on high precision of timing of 
CMS Electromagnetic Calorimeter

Disappearing tracks + jets, 
Compress SUSY with Δm(χ̃±

1,χ̃0
1) ~ 100 MeV

Looking for a « short track »

Specific Reconstruction

8

Decay within the 
tracker volume

Too low energy to 
create calorimeter 

deposits

Core background jets

Satellite bunches

CMS-PAS-EXO-19-001

CMS-PAS-SUS-19-005

Displaced jets

Disappearing track

http://cds.cern.ch/record/2667508?ln=en
http://cds.cern.ch/record/2668105?ln=en


Displaced and Merged Photons
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EM CAL

H CAL

alp

Standard E-Gamma objects reconstruction not
suitable for displaced/merged photons
à Usually expect symmetries in the variables 
used

è Allow asymmetric information 
by summing energies on lower
level clusters to look for 
second/third maxima

è Usage of Machine Learning 
techniques to maximise the 
usage of the information, 
promising results

Displaced photons



Boost
I.e. ttbar pair production:

Higher boost is given, more collimated are the decay:
Adjust reconstruction/identification variable:
Lepton isolation: with a cone size depending on pT:
i.e. Atlas: electron/muon

Using larger cone size for jets to get all decay in 
à Look at jet sub-structure to identify

10



Jets sub-structure
Exploit jet substructure: grooming and tagging
Grooming:

Tagging:
identify the features of hard decays and cut on them
core-idea for 2-body tagging: min(z, 1 - z) > zcut

Use ‘right’ 
angular 

scale

Reject what 
is soft and 
large angle

symmetric
sharing of
the energy

asymmetric
sharing of
the energy

discriminate between 0/2/3/4 subjets inside the wide jet
→N-subjettiness

11



Results

12

5

   Different W taggers: performance

- The LundNet tagger shows the best performance, followed by constituent based taggers, then zNN  
 
- For a , the background rejection of ParticleTransformer(LundNet) is roughly 1.8–2.8(3) 
times better than the  baseline tagger. 
 
- Let’s go through these taggers! 

εrel
sig = 50 %

better

7
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Figure 2. Performance of the algorithms for identifying hadronically decaying W bosons. A selection on the jet
mass, 65 < mSD < 105 GeV, is applied in addition to the ML-based identification algorithm when evaluating the
signal and background efficiencies. For the signal (background), the generatedW bosons (quarks and gluons) are
required to satisfy 500 < pT < 1000 GeV and |η| < 2.4. For each of the two DeepAK8-DDT algorithms, the marker
indicates the performance of the nominal working point, DeepAK8-DDT > 0, and its background efficiency
(shown in the vertical axis) is different from the design value (5% or 2%) due to the additional selection on the jet
mass. The training of the ParticleNet-MD algorithm did not use any samples with hadronic decays of W bosons
as other algorithms did, thus its performance is not optimal forW boson identification.

LundNet is x2 time more efficient for Atlas and in general CMS 
seems to be more efficient with particleNet (coming from different 
phase space? Pt?)

ATL-PHYS-PUB-2021-029
CMS: DP-2020-002

https://cds.cern.ch/record/2777009/files/ATL-PHYS-PUB-2021-029.pdf
https://cds.cern.ch/record/2707946?ln=en


Machine Learning

Going from calibration/regression to 
object identification to event 
categorisation…

Machine learning is also used to select 
events wrt to background (many example)

Focus on trying to have full event 
interpretation…

13

Boosted Jet Identification in  
Searches for Vector-Like Quarks 

Johan Sebastian Bonilla Castro (UC Davis) 
on behalf of the CMS Collaboration 
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To be explored…

and techniques for 
analyzing boosted decays 

JINST 15 P06005

K

Single VLQs: 
High mass reach, 

 -dependentki
VLQ

Pair VLQs: 
Diverse Final 
States 
BR=Free-params

Jet 
observables
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Jets Multiple Taggers
BEST algorithm = Boosted Event Shape Tagger
Using machine learning to classify a wide jet into W, Z, H, top, b 
or light quark jet
Main ideas:
• Move to the rest frame of the assumed particle
• Use several variables to build a neural network discriminant

Phys. Rev. D 94, 094027

à Use in case multiple wide jets in final state
14

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.94.094027


Multiple Identification
Simultaneously identify 6 jets category: BEST (Boosted Event 
Shape Tagger) [NN]
àSearch for pair produced Vector Like Quark (T/B) all hadronic: 

All decay channels in one go

4 ak8 jets pT>400 GeV

CMS-PAS-B2G-18-005

15

http://cds.cern.ch/record/2667230?ln=en


Détection d’anomalies : méthode GAN-AE

11

Apprentissage non-supervisé: GAN + Auto-encodeur (à la place du générateur).

Calcul d’un score d’anomalies à partir des données :

Sélection de données "anormales" 

potentiellement riches en signal

ML: Looking for Anomalies

16

Détection d’anomalies en physique des particules

21

● GAN-AE : sélection d’un sous-ensemble des données

● Recherche d’un « bump » : algorithme pyBumpHunter

Observed excess in agreement with 
the injected one

(Ratio S/B x 20 after the selection on 
the abnormal score)

Unsupervised training: 
Generative Adversarial Network-
based auto-encoder
Established an abnormal score from 
the data:
Selection of abnormal data containing 
potentially high rate of signal
Predict the background shape
Search of bump via pyBumpHunter 
algorithm

arxiv:2305.15179
arxiv:2107.11573

https://arxiv.org/abs/2305.15179
https://arxiv.org/abs/2107.11573


And Not ML: 
Multi-Dimensional Fit

Search for VV resonnances (V=W/Z) [Mass> 1TeV]: 
3D maximum likelihood fit: m(V1V2), m(V1), m(V2)

2 ak8 jets pT>200 GeV
|Δη|<1.3

CM
S-PAS-B2G

-18-002

17

1D plots from 3D fit:

http://cds.cern.ch/record/2668755?ln=en
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Figure 4. The background-only post-fit invariant mass distributions for the tZ candidates (left)
and tH candidates (right) for each region fitted: 2M1L (upper row), 3M (middle row), and 3T
(lower row). The signal hypothesis shown is a T with a mass of 0.7TeV, narrow width, and a
product of the cross section and branching fraction of 600 fb for the tZbq and tHbq channels. The
data are represented by the black points with error bars, the signal hypothesis is represented by the
red dashed line, the blue histogram gives the fitted background, and the light blue band represents
the uncertainty in the background fit.

the tH channel. The local significance is 3.0 standard deviations for a T quark mass of

0.68TeV. For the same T quark mass the local significance is 0.2 standard deviations in

the tZ channel. In a search for a vector-like quark, one expects similar branching fractions

for the tH and tZ channels. No overall excess is measured when considering the fit of all

six distributions.
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product of the cross section and branching fraction of 600 fb for the tZbq and tHbq channels. The
data are represented by the black points with error bars, the signal hypothesis is represented by the
red dashed line, the blue histogram gives the fitted background, and the light blue band represents
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the tH channel. The local significance is 3.0 standard deviations for a T quark mass of

0.68TeV. For the same T quark mass the local significance is 0.2 standard deviations in

the tZ channel. In a search for a vector-like quark, one expects similar branching fractions

for the tH and tZ channels. No overall excess is measured when considering the fit of all

six distributions.
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An excess was observed on variable shaped by the selection, 
defined a second selection to remove the shaping 
è more robust analysis

è Obtain a falling background

Not ML:
Removing Selection Bias

18

JHEP01(2020)036
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The same criteria than before are used, simply modify the cut value: 
Define a cut as function of the main variable to keep a quantile of 
events from the previous cut
è Preserving the shape as just reducing the shape by a given quantile
How to design the new cut value:
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TPrimeMass(GeV)

Nbins:        TMass:     Quantile:     Percentile
bin20  LE:700  a:1.03651    b:0.65
bin21  LE:720  a:1.0297     b:0.65
bin22  LE:740  a:1.02195    b:0.65
bin23  LE:760  a:1.01412    b:0.65
bin24  LE:780  a:1.00729    b:0.65

Nbins:        TMass:     Quantile:     Percentile
bin20  LE:700  a:0.859053    b:0.5
bin21  LE:720  a:0.851124    b:0.5
bin22  LE:740  a:0.84484     b:0.5
bin23  LE:760  a:0.83976     b:0.5
bin24  LE:780  a:0.83254     b:0.5
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bin22  LE:740  a:1.09477    b:0.7
bin23  LE:760  a:1.08877    b:0.7
bin24  LE:780  a:1.08122    b:0.7

● DR(bb)<1.1 → find percentage in order to have M=700, Quantile_DR(bb)~1.1. 

Selected %70
➔  Close to 

DR_bbCut~1.1
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1- Cutting this plot in 
slices & ProjectionY for 
each bin interval

2- derive quantile values for each bin interval & find the percentage 

● Design a cut on Y (DR_bbH) depending on variable X (TprimeMass) in order to 
keep a percentage of the input distribution ⇒ No shaping of input distribution

○ Get the Projection DR_bbH for each bin of TprimeMass
● Determine the appropriate quantile value for the chosen X range based on the 

desired percentage to be kept.
○ to preserve same efficiency as previous cut
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bin23  LE:760  a:1.01412    b:0.65
bin24  LE:780  a:1.00729    b:0.65
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bin20  LE:700  a:0.859053    b:0.5
bin21  LE:720  a:0.851124    b:0.5
bin22  LE:740  a:0.84484     b:0.5
bin23  LE:760  a:0.83976     b:0.5
bin24  LE:780  a:0.83254     b:0.5

Nbins:        TMass:     Quantile:     Percentile
bin20  LE:700  a:1.11248     b:0.7
bin21  LE:720  a:1.10582    b:0.7
bin22  LE:740  a:1.09477    b:0.7
bin23  LE:760  a:1.08877    b:0.7
bin24  LE:780  a:1.08122    b:0.7

● DR(bb)<1.1 → find percentage in order to have M=700, Quantile_DR(bb)~1.1. 

Selected %70
➔  Close to 

DR_bbCut~1.1
b
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2
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1- Cutting this plot in 
slices & ProjectionY for 
each bin interval

2- derive quantile values for each bin interval & find the percentage 

● Design a cut on Y (DR_bbH) depending on variable X (TprimeMass) in order to 
keep a percentage of the input distribution ⇒ No shaping of input distribution

○ Get the Projection DR_bbH for each bin of TprimeMass
● Determine the appropriate quantile value for the chosen X range based on the 

desired percentage to be kept.
○ to preserve same efficiency as previous cut

%50 { %65 { %70 {

DR_bb{Higgs} vs TPrimeMass

TprimeMass (GeV)

3 RECALL: Quantiles Principles and first example with DR_bb{higgs} New_cut3

Cu
t V

ar
ia

bl
e

Main Variable 
300 400 500 600 700 800 900 1000 1100 1200 1300

Main Variable
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

C
ut

 V
ar

ia
bl

e

0

100

200

300

400

500

600

700

800

Illustration Only

Define bin 
based on 
the main 
variable

bin1
bin2
bin3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Cut Variable

0

50

100

150

200

250

Projection on Y per bin

Define cut value to keep a 
X-quantile of the 

distribution
The value of cut will differ 

depending on the bin

”Shaping cut”

Fit is performed to 
remove potential 

statistical fluctuations



300 400 500 600 700 800 900 1000 1100 1200 1300
 [GeV]H+topM

20
40
60
80

100
120
140
160
180

Ev
en

ts
 / 

40
 G

eV 3T region
Data
Bkg. only post-fit

 = 700 GeV
T

tH, m→T
(Best Fit)

CMSPreliminary  (13 TeV)-136 fb

Keep the same efficiency for the signal than the optimized cuts 
(shaped analysis), still optimized cuts have better S/B at high values 

è The background is clearly a falling background
è Better control of the background, easier to see a potential excess…

Removing Selection Bias
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Figure 2: The five-jet invariant mass distribution in the 2M1L region after the high-mass (green
crosses) and low-mass (black circles) selections in 2018 dataset. The low-mass selection results
in a mass distribution that is smoothly falling, unlike the high-mass selection. The high-mass
selection is more efficient for signal T masses above 700 GeV.

5 Background estimation and validation

While signal events form a resonance in the five-jet invariant mass, SM background events
form a smoothly falling distribution. The background distribution in the 3T signal region is
estimated from regions with relaxed b-tagging requirements. As described previously, the
high-mass selection sculpts the mass distribution. The validation of the background estima-
tion method is mainly conducted in this region as it has a more complex shape.

As the selection variables are not correlated with the b-tagging criteria, the shape of the five-jet
invariant mass distribution for the SM backgrounds can be modeled from data in regions with
loosely b-tagged jets without introducing a bias.

The background-dominated regions are defined by relaxing the b-tagging requirements on
three of the jets used to form the T candidate. The 3M region contains events with three
medium b-tagged jets, but no events with three tight b-tagged jets. The 2M1L region con-
tains events with two medium and one loose b-tagged jets, but no events with three medium
b-tagged jets. These conditions create three mutually exclusive regions. The 2M1L region
is enriched in background events, while the 3M region provides a transition region between
background- and signal-enriched regions. Both regions have kinematic distributions similar to
the 3T region. With the large sample sizes in the 2M1L region, the background distributions
are determined with high statistical precision.

The background shape estimation method is validated in validation samples enriched in mul-
tijet or tt events where similar subsamples with different b-tagging criteria are defined. Both
samples include events with total c2 < 50. The multijet sample requires the maximum individ-
ual particle c2 to be in the range 5–20, while the tt sample requires the maximum individual
particle c2 to be in the range 3–5. Both validation samples are mutually exclusive from the
signal regions where the maximum individual particle c2 < 3. Additionally, the multijet sam-
ple requires c2

t > 1 to reduce the number of tt events, while the tt sample requires c2
t < 1.5

along with an inverted c2
H/Z > 1.5 (1.0) requirement for the tH (tZ) channel. The multijet
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B2G-19-001

http://cms.cern.ch/iCMS/analysisadmin/get?analysis=B2G-19-001-paper-v6.pdf


Conclusion
Searches are challenging à looking in the corner/tail of SM physics
à New searches of non-standard final state
Detector are aging à Need to keep high performance

è Usage of Machine Learning to keep/improve calibration of objects
è Improve the reconstruction for non-standard objects
è Machine learning can help in reducing the new kind of background
è More energy à More boost! Adapt algorithms with sub-structure!
è Machine learning learning about the ‘non-standard’
è Improve analysis technics also for cut based

è Extremely large number of new tools to cope for the new
challenges, machine learning is highly present at many different 
stage

è Hopefully, finding something new soonish?!

(Recall, machine learning [neural networks] is used in particle physics 
since ~1970…)
CAREFUL: Full machine learning analysis request care when willing to
share with theoriticians… 21
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Lund Plane

2324

   The Lund plane
- An abstract representation of the jet formation, initially developed by theorists to better understand it 
 
- Each emission represented by a point in the kT-emission angle plane (log scale)  
 
- Hard scattering, collinear and large-angle emissions populate different regions of the plane  
 
- Experimentally, we can have an approximate reconstruction of the Lund Plane  
  by running back the CA jet clustering and using the jet merging information  

arXiv:2004.03540v2 [hep-ex] (ATLAS)


