

Trend and novelty on tools used for BSM searches at LHC

Stephanie Beauceron LPNHE

Evolution of computers

Looking for the less obvious

Large search program but except the Higgs, nothing new

so far

- → Machine Learning to improve calibration
- \rightarrow Decay not automatic
- \rightarrow Form of the decay not 'usual'
- \rightarrow Looking for anomalies
- \rightarrow Machine Learning to help the selection
- \rightarrow Improving background shape

Many Processes in Reality

 p_T

- → Improving the understanding of the detector thanks to machine learning:
- Regression method to improve energy measurement
- Better jet tagging
- Calibration at the level of jet constituents
- Improve track reconstruction^T(mostly HL-LHC)

The cell 'time cut'

Time resolution is good for large enough E significance

- $\begin{cases} |E_{\text{cell}}|/\sigma_E > 4 \\ |t_{\text{cell}}| \le 12.5 \text{ ns} \end{cases} \quad \text{OR} \quad |E_{\text{cell}}|/\sigma_E > X_{\text{UL}} \end{cases}^{\pm}$
- >Cells passing $|E_{cell}|/\sigma_E$ >4 but failing $|t_{cell}| < 12.5$ ns -60 are also vetoed from being collected as neighbouring cells_{10³}

AS-CONF-2023-042

Truth jet ml

Cut switched off for E significance greater than x_{UL} to avoid rejecting phase space potentially sensitive to Long-Lived-Particle

Topo-cluster time [ns]

Long Lived Particles

Long Lived Particles

HSCP: Measure candidate velocity (β) and mass (m = p/ $\beta\gamma$) from dE/dx or ToF Particles can be detected via high ionization. Anomalously high dE/dx is measured by the Inner Tracker.

HSCP

Neutro for charged LLP which decays within tracker to at least one vertex with many tracks Searches will benefit from Pixel Opgrades Dedicated secondary-vertex reconstruction for DVs benefitting from dedicated track reconstruction for nonprompt particles (Large Radius Tracking)

arXiv:2301.13866

250

R [mm]

Quarter Rings

I.e. ttbar pair production:

Higher boost is given, more collimated are the decay: Adjust reconstruction/identification variable: Lepton isolation: with a concosize depending on pT: i.e. Atlas: $P_T^{\mu} \stackrel{\text{with } R}{=} \min \left(\frac{2}{p_T}, 0.2, (0.3) \right)_{\text{electron/muon}}$ Using larger cone size for jets to get all decay in \rightarrow Look at jet sub-structure to identify

Exploit jet substructure: grooming and tagging Grooming:

Tagging: identify the features of hard decays and cut on them core-idea for 2-body tagging: min(z, 1 - z) > zcut

discriminate between 0/2/3/4 subjets inside the wide jet \rightarrow N-subjettiness

Different W taggers: performance

LundNet is x2 time more efficient for Atlas and in general CMS seems to be more efficient with particleNet (coming from different phase space? Pt?)

Jets Multiple Taggers

BEST algorithm = Boosted Event Shape Tagger Using machine learning to classify a wide jet into W, Z, H, top, b or light quark jet Main ideas:

- Move to the rest frame of the assumed particle
- Use several variables to build a neural network discriminant

 \rightarrow Use in case multiple wide jets in final state

Multiple Identification

Simultaneously identify 6 jets category: BEST (Boosted Event Shape Tagger) [NN] <u>CMS-PAS-B2G-18-005</u>

 \rightarrow Search for pair produced Vector Like Quark (T/B) all hadronic: All decay channels in one $\frac{1}{t,t,b}$

4 ak8 jets p_T>400 GeV

VLQ	W-decay	Z-decay	h-decay
T	Wb	Zt	ht
B	Wt	Zb	hb
$T_{5/3}$	Wt	-	-
$Y_{-4/3}$	Wb	-	-
, ,			

ML: Looking for Anomalies

significance

- **Unsupervised training: Generative Adversarial Network-**
- based auto-encoder
- **Established an abnormal score from the data:**
- Selection of abnormal data containing potentially high rate of signal Predict the background shape Search of bump via pyBumpHunter algorithm

Observed excess in agreement with the injected one

(Ratio S/B x 20 after the selection on the abnormal score)

arxiv:2107.11573

Not ML: Removing Selection Bias

An excess was observed on variable shaped by the selection, defined a second selection to remove the shaping → more robust analysis

→ Obtain a falling background

CCMS, unit unit units un

Keep the same efficiency for the signal than the optimized cuts (shaped analysis), still optimized cuts have better S/B at high values

→ The background is clearly a falling background
→ Better control of the background, easier to see a potential excess..

Conclusion

Searches are challenging \rightarrow looking in the corner/tail of SM physics \rightarrow New searches of non-standard final state Detector are aging \rightarrow Need to keep high performance

- → Usage of Machine Learning to keep/improve calibration of objects
- → Improve the reconstruction for non-standard objects
- → Machine learning can help in reducing the new kind of background
- → More energy → More boost! Adapt algorithms with sub-structure!
- → Machine learning learning about the `non-standard'
- → Improve analysis technics also for cut based
- Extremely large number of new tools to cope for the new challenges, machine learning is highly present at many different stage
- → Hopefully, finding something new soonish?!

(Recall, machine learning [neural networks] is used in particle physics since ~1970...)

CAREFUL: Full machine learning analysis request care when willing to share with theoriticians...

Lund Plane

The Lund plane

- An abstract representation of the jet formation, initially developed by theorists to better understand it
- Each emission represented by a point in the kT-emission angle plane (log scale)
- Hard scattering, collinear and large-angle emissions populate different regions of the plane
- Experimentally, we can have an approximate reconstruction of the Lund Plane by running back the CA jet clustering and using the jet merging information

arXiv:2004.03540v2 [hep-ex] (ATLAS)

