Taking aim at the wino-higgsino plane with the LHC

Taylor Murphy

Laboratoire de Physique Théorique et Hautes Énergies Sorbonne Université & CNRS

25 September 2023

Based on arXiv:2309.07213 in collaboration with L. M. Carpenter H. B. Gilmer and J. Kawamura

STUDYING MSSM WITH WINO/HIGGSINO LSP CONS

- LHC bounds on weakly interacting sparticles ≪ color-charged states: lots of potential progress with Run 3
- Some recent progress in difficult parameter space with compressed electroweakinos
- Compressed spectra $(\tilde{\chi}_1^0, \tilde{\chi}_1^{\pm}, \tilde{\chi}_2^0)$ are common in scenarios with light μ and/or M_2 : higgsino and/or wino-like LSP
- Why study these, other than to cover allowed parameter space?
 - $\hfill \hfill \hfill$
 - \Box (Even if "unnatural", measuring μ would shed light on EWSB)
 - $\hfill\square$ Wino LSP occurs naturally in AMSB scenarios
 - □ Wino/higgsino DM often underabundant (through freeze out) but alternate cosmologies/additional dark particles can work
- This work: limits + HL-LHC projections in the (μ, M_2) plane

Compressed EWinos: parameter space

- LHC reach is highly sensitive to EWino mass splittings: even
 \$\mathcal{O}(1)\$ GeV splitting changes favor one analysis over others
- Spectra computed with SPHENO v. 4.0.5 incl. NLO corrections (We take $\mu, M_2 \ll M_1$ throughout, and $\tan \beta = 10$)

- Current analyses probe $m_{\tilde{\chi}_1^0} \sim 200 \,\text{GeV}$
- We also want to explore the "well mixed" region with $\mu \sim M_2$

² of 13

Compressed EWinos: mass splittings

• Of particular significance are $m_{\tilde{\chi}_1^{\pm}} - m_{\tilde{\chi}_1^0}$ and $m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0}$

- Wino-like scenarios feature small splittings for { \$\tilde{\chi}_1\$, \$\tilde{\chi}_1\$}; higgsino-like scenarios have all three EWinos nearly degenerate
- $\Delta m(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) \lesssim 7 \,\text{GeV}$ for $\mathcal{O}(100) \,\text{GeV}$ well-mixed EWinos: this entire parameter space is "compressed", but not all compression is created equal

Compressed EWinos: search strategies

- Least compression, $\Delta m(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) \gtrsim 5 \,\text{GeV}$
 - $\hfill \mbox{ EWinos decay through off-shell } W/Z$ and may produce leptons that are soft but observable
 - \Box CMS-SUS-16-048 [1] (35.9 fb⁻¹) looks for soft leptons from $\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^0$
 - \square ATLAS-SUSY-2019-09 [2] (139 fb⁻¹) looks for trilepton + $E_{\mathrm{T}}^{\mathrm{miss}}$
 - □ Also: hadronic diboson (ATLAS-SUSY-2018-41 [3]), monojet
- Extreme compression, $\Delta m(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) \lesssim 0.5 \,\text{GeV}$
 - \square Leptons and jets too soft + $\tilde{\chi}_1^{\pm}$ lives long enough to deposit a track
 - \Box CMS-EXO-19-010 [4] (101 fb⁻¹) looks for "disappearing" tracks
- Moderate compression, $\Delta m(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) \in (1, 5) \text{ GeV}$
 - □ Charginos decay promptly, but decay products are too soft... unless EWinos are produced in association with something visible
 - \square ATLAS-EXOT-2016-23 [5] (36.1 fb⁻¹) seeks hadronic $W/Z + E_{\rm T}^{\rm miss}$
 - $\hfill\square$ We upgrade this analysis to significantly increase its sensitivity

Compressed EWinos: search strategies

5 of 13

ATLAS-EXOT-2016-23: HADRONIC W/Z

- Typical events have missing energy with ≥ 2 jets or ≥ 1 large-radius jet (anti- $k_t R = 1.0$)
- Hadronic W/Z can come from ISR and/or EWino decays
- Search can be sensitive to both higgsino- and wino-like LSP if we include all light EW pairs { \$\tilde{\chi}_1^0, \$\tilde{\chi}_1^\pm, \$\tilde{\chi}_2^0\$}\$
- For $\mathcal{O}(100)$ GeV EWinos, $\sigma(pp \rightarrow \tilde{\chi}\tilde{\chi} + V) \sim (1\text{--}10)$ fb at NNLO + approx. NNLL
- Multiple non-overlapping SRs in two topologies (narrow vs. fat jet) classified by N_{b-jet}

	Merged topology				Resolved topology		
$E_{\mathrm{T}}^{\mathrm{miss}}$	$> 250 \mathrm{GeV}$				$> 150 \mathrm{GeV}$		
Jets, leptons	$\geq 1J, 0\ell$				$\geq 2j, \ 0\ell$		
b-jets	no b -tagged jets outside of J			of J	≤ 2 b-tagged small-R jets		
Multijet suppression	$\Delta \phi (ec{E}_{ ext{T}}^{ ext{miss}}, J ext{ or } jj) > 2\pi/3$						
	$\min_{i=1,2,3} \left[\Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, j_i) \right] > \pi/9$						
	$\left \vec{p}_{\mathrm{T}}^{\mathrm{miss}} \right > 30 \mathrm{GeV} \mathrm{or} \geq 2 b$ -jets						
	$\Delta \phi(\vec{E}_{\rm T}^{\rm miss},\vec{p}_{\rm T}^{\rm miss}) < \pi/2$						
Signal properties					$p_{\mathrm{T}}^{j_1} > 45 \mathrm{GeV}$		
					$\sum_i p_{\rm T}^{j_i} > 120 \ (150) {\rm GeV}$ for 2 (≥ 3) jets		
Signal region	0b-HP	0b-LP	1b-HP	1b-LP	0b-Res	1b-Res	
J or jj	HP	LP	HP	LP	$\Delta R_{jj} < 1.4$ and $m_{jj} \in [65, 105] \text{GeV}$		
b-jet	no <i>b</i> -jet	no $b\text{-jet}$	$1\ b\text{-jet}$	$1\ b\text{-jet}$	no <i>b</i> -jet	$1 \ b$ -jet	

IMPROVING THE MONO-BOSON SEARCH

• Observation: ATLAS provides background yields binned by $E_{\rm T}^{\rm miss}$ though selection in each topology is flat

• EWino signal $E_{\rm T}^{\rm miss}$ diminishes slower than backgrounds \implies tighter $E_{\rm T}^{\rm miss}$ cuts can improve search sensitivity

(VAGUE) IMPLEMENTATION DETAILS

- $N_{\text{event}} = 5 \times 10^4$ samples with $\delta m \leq 100 \text{ GeV}$ produced in MG5_AMC v. 2.7.2, showered with PYTHIA 8 v. 8.245
- Cross sections (cumulative) computed at NNLO + aNNLL with RESUMMINO v. 3.1.2
- Detector simulation in DELPHES 3, selections with EXROOTANALYSIS
- Merged (fat-jet) topology SR with 0 b-jets has best sensitivity
- Compute joint likelihood \mathcal{L} and TS

$$q_{\mu}^{m} = -2 \ln rac{\mathcal{L}(m \mid \mu, \hat{\hat{b}})}{\mathcal{L}(m \mid \hat{\mu}, \hat{b})}$$

for each EW ino hypothesis assuming Poisson data + Gaussian background, then 95% CL limit, discovery potential...

9 of 13

OTHER REINTERPRETATIONS

- CMS soft leptons (higgsino-like only): implemented in MADANALYSIS 5; very low efficiencies require O(10⁵) event samples
- ATLAS diboson (mostly higgsino-like): results given in (μ, M_2) ; shamelessly stolen
- ATLAS trilepton (higgsino-like only): interpreted already for higgsino-like LSP; mapped from physical masses onto (μ, M_2)
- CMS disappearing tracks (wino-like only): implemented in MA5; extremely low efficiencies but good reach nonetheless
- Monojet: 1 ATLAS [6] + 1 CMS analysis [7] implemented in MA5; work ongoing at Paris but I can sketch results
 - CMS and ATLAS results are pretty different; CMS is stronger but imposes fairly weak limits

RESULTS

11 of 13

RESULTS

- Striking complementarity between searches: dependence on $\Delta m(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0)$ is clear
- Wino-like LSP limits are better right now than higgsino-like: ≥ 500 GeV vs. 150–300 GeV
- 36.1 fb⁻¹ hadronic mono-boson search competitive today (after our E^{miss}_T enhancement) with full Run 2 searches... shows good potential to (a) improve with statistics, (b) probe well-mixed region
- Limitation: searches recast in MA5 (and our own analysis) can be stats-rescaled to provide HL-LHC projections; not so for mapped/pasted limits
- HL-LHC can exclude most space with μ , $M_2 \lesssim 500$ GeV... ruling out "natural" MSSM?

Outlook

- We have explored multiple constraints on higgsino- and/or wino-like LSP scenarios in the MSSM
- \blacksquare Results are presented in fundamental (μ,M_2) plane based on an array of recasts and a re-analyzed ATLAS hadronic mono-boson search
- Joint-likelihood analysis based on binned $E_{\rm T}^{\rm miss}$ yields provides tighter EWino constraints than simple recast; *viz.* earlier work on higgsinos and sneutrinos
- Currently examining what parameter space can accommodate $\sim 2\sigma$ excesses in ATLAS-SUSY-2018-16 [8]

Outlook

- We have explored multiple constraints on higgsino- and/or wino-like LSP scenarios in the MSSM
- \blacksquare Results are presented in fundamental (μ,M_2) plane based on an array of recasts and a re-analyzed ATLAS hadronic mono-boson search
- Joint-likelihood analysis based on binned $E_{\rm T}^{\rm miss}$ yields provides tighter EWino constraints than simple recast; *viz.* earlier work on higgsinos and sneutrinos
- Currently examining what parameter space can accommodate $\sim 2\sigma$ excesses in ATLAS-SUSY-2018-16 [8]

Thank you for your attention

I am happy to answer questions if we have time

BIBLIOGRAPHY (1)

- [1] A. M. Sirunyan *et al.* (CMS), Phys. Lett. B **782**, 440 (2018), arXiv:1801.01846 [hep-ex].
- [2] G. Aad *et al.* (ATLAS), Eur. Phys. J. C **81**, 1118 (2021), arXiv:2106.01676 [hep-ex].
- [3] G. Aad *et al.* (ATLAS), Phys. Rev. D 104, 112010 (2021), arXiv:2108.07586 [hep-ex].
- [4] A. M. Sirunyan *et al.* (CMS), Phys. Lett. B 806, 135502 (2020), arXiv:2004.05153 [hep-ex].
- [5] M. Aaboud *et al.* (ATLAS), J. High Energy Phys. **10**, 180, arXiv:1807.11471 [hep-ex].
- [6] G. Aad *et al.* (ATLAS), Phys. Rev. D 103, 112006 (2021), arXiv:2102.10874 [hep-ex].

BIBLIOGRAPHY (2)

- [7] Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at $\sqrt{s} = 13$ TeV, Tech. Rep. (2021).
- [8] G. Aad et al. (ATLAS), Phys. Rev. D 101, 052005 (2020), arXiv:1911.12606 [hep-ex].

Bonus material

Inclusive EWino + W/Z pair production C

STATISTICS FOR OUR ANALYSIS

Likelihood function:

$$\begin{split} \mathcal{L}(m \mid \mu, b) &= \prod_{i=1}^{N_{\text{bin}}} \frac{(\mu s_i + b_i)^{m_i}}{m_i!} \, \mathrm{e}^{-(\mu s_i + b_i)} \\ &\times \frac{1}{\sqrt{2\pi} \, \sigma_{b,i}} \exp\left\{-\frac{1}{2} \frac{(b_i - \langle b_i \rangle)^2}{\sigma_{b,i}^2}\right\} \end{split}$$

Test statistic:

$$q_{\mu}^{m}=-2\lnrac{\mathcal{L}(m\mid\mu,\hat{\hat{b}})}{\mathcal{L}(m\mid\hat{\mu},\hat{b})},\quad\hat{\mu}\leq\mu$$

• Exclusion and discovery:

$$ext{CL}_{ ext{s}} = rac{1 - \Phi([q_{\mu=1}^{m=n_{ ext{obs}}}]^{1/2})}{\Phi([q_{\mu=1}^{m=\langle b
angle}]^{1/2} - [q_{\mu=1}^{m=n_{ ext{obs}}}]^{1/2})}, \hspace{1em} Z = egin{cases} [q_{\mu=1}^{m=\langle b
angle}]^{1/2}, \hspace{1em} ext{excl.} \ [q_{\mu=0}^{m=s+\langle b
angle}]^{1/2}, \hspace{1em} ext{excl.} \ [q_{\mu=0}^{m=s+\langle b
angle}]^{1/2}, \hspace{1em} ext{disc.} \end{cases}$$

4 of 4