Primordial black holes and gravitational waves from long-range scalar forces IRN - Terascale

Marcos M. Flores – 27, Oct., 2023

Primordial black holes 8

primordial structure formation

[**MMF**, A. Kusenko: PRL 126 (2021) 4, 041101] [**MMF**, A. Kusenko: *JCAP* 05 (2023) 013] [**MMF**, Y. Lu, A. Kusenko: arXiv:2308.09094]

stars and galaxies [Zel'dovich, Novikov (1967); Hawking (1971)]

PBHs are black holes formed in the early Universe before the formation of

- stars and galaxies [Zel'dovich, Novikov (1967); Hawking (1971)]
- Can account for some or all of *dark matter*

PBHs are black holes formed in the early Universe before the formation of

- stars and galaxies [Zel'dovich, Novikov (1967); Hawking (1971)]
- Can account for some or all of *dark matter*
- Astrophysical implications:
 - Can account for some LIGO events
 - Can seed supermassive black holes
 - Can account for all or part of *r*-process nucleosynthesis
 - G objects (discussed later)
 - Many more!

PBHs are black holes formed in the early Universe before the formation of

Primordial black holes: Candidate Events

[Niikura et al., Nature Astronomy arXiv:1701.02151, arXiv:1901.07120]

Primordial black holes: Formation

Formation Mechanism

Inflationary Perturbations [A. Green review: arXiv:2007.10722]

SUSY flat directions, Q-balls & IMD [1612.02529, 1706.09003, 1907.10613]

Light scalar Q-balls (not SUSY) [1612.02529, 1706.09003, 1907.10613]

First order phase transitions See talk by Iason Baldes, [2106.05637, 2212.14037, 2307.11639]

Multiverse bubbles [1512.01819, 1710.02865, 2001.09160]

Primordial structure formation and collapse

[**MMF**, A. Kusenko: PRL 126 (2021) 4, 041101] [**MMF**, A. Kusenko: *JCAP* 05 (2023) 013] [**MMF**, Y. Lu, A. Kusenko: arXiv:2308.09094]

Mass Range
DM, LIGO, supermassive
DM
DM, LIGO, supermassive

Goal of PBH Model Building

$f_{\rm PBH} = \frac{\Omega_{\rm PBH}}{\Omega_{\rm DM}} \quad \& \quad M_{\rm PBH}$

The paradigm of *primordial* structure formation

1 second

100 seconds

380 000 years

Inflation

Accelerated expansion of the Universe

Formation of light and matter

Light and matter are coupled

Dark matter evolves independently: it starts clumping and forming a web of structures

Light and matter separate

 Protons and electrons form atoms

 Light starts travelling freely: it will become the Cosmic Microwave Background (CMB)

300-500 million years

Billions of years

13.8 billion years

Dark ages

Atoms start feeling the gravity of the cosmic web of dark matter

First stars

The first stars and galaxies form in the densest knots of the cosmic web

Galaxy evolution

The present Universe

Inflation

Accelerated expansion of the Universe

Formation of light and matter

Light and matter are coupled

Dark matter evolves independently: it starts clumping and forming a web of structures

Light and matter separate

 Protons and electrons form atoms

 Light starts travelling freely: it will become the Cosmic Microwave Background (CMB)

Dark ages

Atoms start feeling the gravity of the cosmic web of dark matter

First stars

The first stars and galaxies form in the densest knots of the cosmic web

Galaxy evolution

The present Universe

Inflation Accelerated expansion of the Universe

Formation of light and matter

Light and matter are coupled

Dark matter evolves independently: it starts clumping and forming a web of structures

Light and matter separate

 Protons and electrons form atoms

 Light starts travelling freely: it will become the Cosmic Microwave Background (CMB)

Dark ages

Atoms start feeling the gravity of the cosmic web of dark matter

First stars

The first stars and galaxies form in the densest knots of the cosmic web

Galaxy evolution

The present Universe

Most interesting second in the history of the Universe

Inflation Accelerated expansion of the Universe

Formation of light and matter

Light and matter are coupled

Dark matter evolves independently: it starts clumping and forming a web of structures

Light and matter separate

 Protons and electrons form atoms

 Light starts travelling freely: it will become the Cosmic Microwave Background (CMB)

Structure Formation

Atoms start feeling the gravity of the cosmic web of dark matter

First stars

The first stars and galaxies form in the densest knots of the cosmic web

Galaxy evolution

The present Universe

Most interesting second in the history of the Universe

Conventional structure formation: Basics $\rho(x,t) = \bar{\rho}(t) \big(1 + \delta(x,t) \big)$ \downarrow

$G_{\mu\nu} = 8\pi G T_{\mu\nu}, \qquad \nabla_{\mu} T^{\mu\nu} = 0$

System of Coupled Differential Equations

 \downarrow

 $\left(\delta(x,t)\ll 1\right)$

Conventional structure formation by example

$\ddot{\delta} + 2H\dot{\delta} = 4\pi G\bar{\rho}_m\delta, \qquad H = \frac{1}{2t}, \qquad \bar{\rho}_m \sim \Omega_m \sim 0$ $\delta(t) = c_1 + c_2 \ln t$

Conclusion: Matter perturbations only grow logarithmically during a radiation dominated era

Conventional structure formation by example

12

$r \ll m_{\gamma}^{-1} \longleftrightarrow$ long-range force

$\mathscr{L} \supset y \chi \bar{\psi} \psi \Longrightarrow V($

$$(r) = -\frac{y^2}{r} \exp\left(-m_{\chi}r\right)$$

$r \ll m_{\gamma}^{-1} \longleftrightarrow$ long-range force

 $\implies H^{-1} \ll m_{\gamma}^{-1}$

Yukawa interactions are *always* attractive

$\mathscr{L} \supset y \chi \bar{\psi} \psi \Longrightarrow V($

Yukawa interactions are *always* attractive

$$(r) = -\frac{y^2}{r} \exp\left(-m_{\chi}r\right)$$

 $\beta \equiv y \left(M_{\rm Pl} / m_{\psi} \right)$

Initial conditions for primordial structure formation

- Before the formation of structure can occur, we require:
 - $\bar{\psi}\psi \leftrightarrow \chi\chi$ interactions to freeze-out
 - ψ particles become non-relativistic
 - χ -radiation pressure is negligible.
- Our calculations occur in the region of parameter space where the average distance between particles remains larger than m_w^{-1} .
- We anticipate that early structure formation begins when $T \sim m_{\psi}$

• In Fourier space, the growth of ψ overdensities, denoted $\Delta(x, t) = \Delta n_{\psi}/n_{\psi}$ are given by a set of coupled differential equations:

 $\ddot{\delta}_k + 2H\dot{\delta}_k - \frac{3}{2}H^2(\Omega_r\delta_k + \Omega_m\Delta_k) = 0$ $\ddot{\Delta}_k + 2H\dot{\Delta}_k - \frac{3}{2}H^2 \left[\Omega_r \delta_k + \Omega_m (1+\beta^2)\Delta_k\right] = 0$

[L. Amendola et. al., arXiv:1711.09915][S. Savastano et. al., arXiv:1906.05300][Domenech and Sasaki, arXiv:2104.05271]

the approximate solution:

$$\Delta_k(t) \approx \frac{\Delta_k(t_0)}{\sqrt{8\pi}} \frac{\exp\left(4\sqrt{p}t_0\right)}{p^{1/4}(t/t_0)}$$

• For large scalar forces, the perturbations grow quickly as demonstrated by

the approximate solution:

$$\Delta_k(t) \approx \frac{\Delta_k(t_0)}{\sqrt{8\pi}} \frac{\exp\left(4\sqrt{p}(t/t_{\rm eq})^{1/4}\right)}{p^{1/4}(t/t_{\rm eq})^{1/8}}, \qquad p = \frac{3}{8} (1+\beta^2)$$

• For large scalar forces, the perturbations grow quickly as demonstrated by

For $p \gg 1 \implies \Delta_k / \dot{\Delta}_k \ll H^{-1} \implies$ rapid structure formation

Numerical simulations

[G. Domènech et. al., arXiv:2304.13053]

$\Delta_k \ll 1 \implies \Delta_k \gtrsim 1 \iff$ nonlinear regime \implies virialize

Without dissipation, halos will remain viralized until the constituent particles decay

$\Delta_k \ll 1 \implies \Delta_k \gtrsim 1 \iff$ nonlinear regime \implies virialize

Energy dissipation through scalar radiation

The same long-range force that cause the growth of structure will also <u>cause</u> <u>accelerating particles to emit scalar waves.</u>

Energy dissipation through scalar radiation

The same long-range force that cause the growth of structure will also cause accelerating particles to emit scalar waves.

There are *four* possible dissipation channels:

- 1. Coherent motion
- 2. Incoherent motion
- 3. Bremsstrahlung (free-free) emission
- 4. Surface radiation

Bremsstrahlung and surface radiation will be the most important channels for our discussion

Energy dissipation through scalar radiation

The same long-range force that cause the growth of structure will also <u>cause</u> <u>accelerating particles to emit scalar waves.</u>

There are four possible dissipation channels:

- 1. Coherent motion
- 2. Incoherent motion
- 3. Bremsstrahlung (free-free) emission
- 4. Surface radiation

Bremsstrahlung and surface radiation will be the most important channels for our discussion

Energy dissipation through scalar radiation

The same long-range force that cause the growth of structure will also <u>cause</u> <u>accelerating particles to emit scalar waves.</u>

There are four possible dissipation channels:

- 1. Coherent motion
- 2. Incoherent motion
- 3. Bremsstrahlung (free-free) emission
- 4. Surface radiation

Bremsstrahlung and surface radiation will be the most important channels for our discussion

$$\tau_{\rm cool} = \frac{E}{P_{\rm brem} + P_{\rm surf} + \cdots}$$

Energy dissipation through scalar radiation Given a halo of size R can lose energy and contract as long as,

General algorithm for collapse:

Cooling via free-free emission χ radiation becomes trapped Surface radiation takes over

 $\tau_{\rm cool}(R) \ll H^{-1}$

PBH Formation: primordial structure formation Cooling via free-free emission *
 Black hole forms
 Fermi ball forms
 Halo annihilates χ radiation becomes trapped Surface radiation takes over To ensure that a black hole forms, we will introduce an asymmetric dark fermion ψ $\mathcal{L} \supset y \chi \psi \psi \qquad \&$

Yukawa Interaction & Scalar Cooling + Fermion Asymmetry \Longrightarrow PBHs

$$\eta_{\psi} = (n_{\psi} - n_{\bar{\psi}})/s \neq 0$$

PBH abundance

- to capture all of the dark matter ψ particles in halos and therefore PBHs.
- Thus, the PBH-dark matter fraction is related to the baryon density:

$$f_{\rm PBH} = \frac{\Omega_{\rm PBH}}{\Omega_{\rm DM}} = 0.2 \frac{m_{\psi} \eta_{\psi}}{m_p \eta_{\rm B}} = \left(\frac{m_{\psi}}{5 \text{ GeV}}\right) \left(\frac{\eta_{\psi}}{10^{-10}}\right)$$

<u>Our mechanism can describe the closeness of Ω_{DM} and Ω_{R} .</u>

• The strength of the long-range force we are considering is likely strong enough

PBH Mass Distribution

- the time of formation.
- formation.
- Schechter function:

$$M^2 \frac{dN_h}{dM} \propto \frac{1}{\sqrt{\pi}}$$

 Again, the strength of the scalar interaction will lead to rapid PBH formation. Thus, we expect the mass function of PBHs to represent the structure of the ψ - fluid at

• We need N-body simulations to accurately describe the details of ψ - structure

• In the absence of this, we will approximate the mass function using the Press-

$$\left(\frac{M}{M_*}\right)^{1/2} e^{-M/M_*}$$

Illustrative examples

• PBH dark matter:

$$\eta_{\psi} \sim \eta_B \sim 10^{-10} \\ m_{\psi} = 5 \text{ GeV}$$

$$f_{\text{PBH}} = 1$$

Illustrative examples

• PBH dark matter:

$$\eta_{\psi} \sim \eta_B \sim 10^{-10} \\ m_{\psi} = 5 \text{ GeV}$$

$$\begin{cases} f_{\text{PBH}} = 1 \\ f_{\text{PBH}} = 1 \end{cases}$$

Relevant to LIGO

$$\eta_{\psi} \sim 10^{-9} \\ m_{\psi} = 5 \text{ MeV} \begin{cases} f_{\text{PBH}} \sim 10^{-3} \\ f_{\text{PBH}} \sim 10^{-3} \end{cases}$$

Primordial black holes, scalar forces & supersymmetry

[**MMF**, A. Kusenko: *JCAP* 05 (2023) 013] [**MMF**, A. Kusenko, L. Pearce, Y. F. Perez-Gonzales, G. White: arXiv: 2308.15522]

PBHs from Scalar Forces & SUSY Q-balls

- Utilize well understood dynamics of scalar fields in early Universe
 - The initial conditions of this scenario are very similar to Affleck-Dine baryogenesis. See [M. Dine, A. Kusenko hep-ph/0303065]
 - Scalar fields are generic inclusion if BSM physics
 - In particular, supersymmetry contains many scalar fields with 100+ flat directions [Gherghetta et. al '95] which are *lifted* by SUSY breaking terms

Key: Scalar fields acquire a VEV in de Sitter space during inflation

 φ

 $U(\langle \varphi \rangle) \sim H_I^4$

Scalar Fragmentation

&

 $M_Q = \Lambda Q^{3/4}$ $R_Q = Q^{1/4} / \Lambda$

Q-ball Formation

Intermediate matter domination & gravitational forces *can* produce PBHs

Intermediate matter domination & gravitational forces *can* produce PBHs \implies *but* it's very inefficient

Intermediate matter domination & gravitational forces *can* produce PBHs \implies but it's very inefficient \implies need special, spherical configurations

 $U(\langle \varphi \rangle) \sim H_I^4$

Scalar Fragmentation

&

 $M_Q = \Lambda Q^{3/4}$ $R_Q = Q^{1/4} / \Lambda$

Q-ball Formation

 $U(\langle \varphi \rangle) \sim H_I^4$

Inflation & Development of Large VEV

 $U(\langle \varphi \rangle) \sim H_I^4$

Inflation

&

Development of Large VEV

 $U(\langle \varphi \rangle) \sim H_I^4$

Inflation

&

Development of Large VEV

PBHs from Scalar Forces & SUSY Q-balls Λ [GeV]

Observational Implications: Gravitational Waves

[MMF, A. Kusenko, M. Sasaki; PRL 131 (2023) 1, 1]

• Generically, the collapse of dark matter ψ halos will be **aspherical**

• Generically, the collapse of dark matter ψ halos will be **aspherical**

See also: I. Dalianis, C. Kouvaris [arXiv:2106.06023]

 \implies Time changing mass quadrupole moment

- Generically, the collapse of dark matter ψ halos will be **aspherical**
 - \implies Time changing mass quadrupole moment
- It's still not obvious which methodology is best suited to tackling this problem
 - Standard methods, like cosmological perturbation theory <u>do not</u> include forces which couple to charge/number density as a means of generating perturbations

• Generically, the collapse of dark matter ψ halos will be **aspherical**

- It's still not obvious which methodology is best suited to tackling this problem
 - Standard methods, like cosmological perturbation theory <u>do not</u> include forces which couple to charge/number density as a means of generating perturbations
- We utilized the Zel'dovich approximation to directly determine the quadrupole moment, allowing for a calculation of the expected GW spectrum

See also: I. Dalianis, C. Kouvaris [arXiv:2106.06023]

 \implies Time changing mass quadrupole moment

 δ enters the horizon - t_q

δ enters the horizon - t_q Overdensity increases to maximum size - t_{max}

δ enters the horizon - t_q Overdensity increases to maximum size - t_{max} Collapse begins

δ enters the horizon - t_q ↓ Overdensity increases to maximum size - t_{max} ↓ Collapse begins ↓ "Pancake" forms and shell crossing occurs - t_{col}

 δ enters the horizon - t_q Overdensity increases to maximum size - t_{max} Collapse begins "Pancake" forms and shell crossing occurs - t_{col} BH formation or halo annihilation

 δ enters the horizon - t_q Overdensity increases to maximum size - t_{max} Collapse begins "Pancake" forms and shell crossing occurs - t_{col} BH formation or halo annihilation

Growth of perturbations

A reminder of the traditional result:

$$\delta \propto \begin{cases} \ln a & \text{for} \quad (\text{RD}) \\ a & \text{for} \quad (\text{MD}) \end{cases}$$

Here, *our fundamental assumption will be* <u>that</u>

$$\delta \propto a^p, \qquad p \ge 1$$

As before *p* characterizes the strength of the force.

GW Spectrum

GW Spectrum

Primordial black holes and the Galactic Center

[MMF, A. Kusenko, A. M. Ghez, S. Naoz; PRD 108 (2023) 6, L061301]

Brief review of *G* **objects**

- Population of unresolved objects which show both *thermal and dust emission*.
- Simultaneously, they display the dynamical properties of stellar-mass objects
- Various proposed formation mechanisms:
 - Merger of binary systems
 - See Prodan, S., Antonini, F. & Perets (2015), Stephan,
 A. P. et al. (2016)
 - Low-mass star that has retained a protoplanetary disk
 - Murray-Clay, R. A. & Loeb, A; (2015)

[Ciurlo et. al. 2020]

PBH-Neutron star interactions

1. Primordial black holes produced in Big Bang make up part or all of dark matter.

Microscopic primordial black hole

 \implies stellar – mass black holes surrounded by gas $\Leftrightarrow G$ objects

[Takhistov, Fuller, Kusenko, PRL 119 (2017) 6, 061101] [Takhistov, Fuller, Kusenko, PRL 126, 071101 (2021)] [Takhistov, arXiv:1707.05849]

2. A microscopic black hole falls into a neutron star, eats it from the inside, and creates a 1-2 solar mass black hole

G objects as converted neutron stars

PBH-Neutron star interactions

[Takhistov, Fuller, Kusenko, PRL 119 (2017) 6, 061101] [Takhistov, Fuller, Kusenko, PRL 126, 071101 (2021)] [Takhistov, arXiv:1707.05849]

Number of Converted NS

 $-\alpha$ $\rho_{\rm DM}(r) \simeq \rho_{\odot} \left(\frac{r}{r_{\odot}}\right)$

 $n_{\rm NS}(r) \simeq n_{\rm NS,0}$ r_{NS}

PBH-Neutron star interactions

For simplicity, we will assume spherical Bondi accretion.

$$\dot{m} \equiv \frac{\dot{M}_{\rm B}}{\dot{M}_{\rm Ed}} = 1.7 \times 10^{-7} \left(\frac{M}{M_{\odot}}\right) \left(\frac{n_{\infty}}{1 \text{ cm}^{-3}}\right) \left(\frac{T_{\infty}}{10^4 \text{ K}}\right)^{-3/2}$$

Define the efficiency,

 $l \equiv \epsilon \dot{m},$

Generally, $\epsilon = \eta \dot{m} \implies l = \eta \dot{m}^2$

Key: Parameterize theoretical and observational uncertainty in η

$$l = \frac{L_B}{L_{\rm Ed}}$$

Accretion Estimates

Benefits of the PBH – G objects interpretation

- Relates
 - Dark matter as PBHs
 - Mysterious nature of G objects
 - Missing pulsar problem
 - Observed absence of pulsars within the Galactic Center

[Ciurlo et. al. 2020]

Conclusion

- Primordial structure formation <u>can occur</u> and has many interesting phenomenological implications
 - Primordial black holes
 - Matter-antimatter asymmetry
 - Generation of DM
 - Gravitational waves
- PBHs are a compelling DM candidate with numerous interesting astrophysical and cosmological implications

Extra Slides

Scalar fields in de Sitter space during inflation

 $U(\langle \varphi \rangle) \sim H_I^4$ &

 $H_I = \sqrt{\frac{U_{\rm tot}}{3M_{\rm Pl}^2}} \approx \sqrt{\frac{U_I(\Phi_I)}{3M_{\rm Pl}^2}}$

Scalar fields and fragmentation

• Attractive forces induce an *instability* in scalar condensate

[Cotner, Kusenko, Sasaki, Takhistov, JCAP 1910 (2019) 077] [Kusenko, Shaposhnikov, hep-ph/9709492]

Scalar fields and fragmentation

• Attractive forces induce an *instability* in scalar condensate

[Cotner, Kusenko, Sasaki, Takhistov, JCAP 1910 (2019) 077] [Kusenko, Shaposhnikov, hep-ph/9709492]

\Rightarrow Leads to the formation of Q-balls

Scalar fragmentation leads to Q-balls

- Complex scalar field with U(1) symmetry (B, L, B L in SUSY)
- **Q**: Is there a ground state with $Q \neq 0$?
 - <u>A</u>: Yes! If $U(\varphi)/\varphi^2 = \min$, $\varphi = \varphi_0 > 0$
- Key: Q-balls can form from SUSY flat directions lifted by some scale Λ

$$M_Q = \Lambda Q^{3/4}$$
$$R_Q = Q^{1/4} / \Lambda$$

[Coleman; Rosen; Friedberg, Lee, Sirlin]

 $Q = \frac{1}{2i} \left[\left(\varphi^{\dagger} \overleftrightarrow{\partial_0} \varphi \right) d^3 x \right]$

PBH-Neutron star interactions

Capture rate is given by:

where

$$F_0^{\rm MW} = \sqrt{6\pi} \frac{\rho_{\rm DM}}{m_{\rm PBH}\bar{v}} \left(\frac{2GM}{1-2G}\right)$$

[Takhistov, Fuller, Kusenko, PRL 119 (2017) 6, 061101] [Takhistov, Fuller, Kusenko, PRL 126, 071101 (2021)] [Takhistov, arXiv:1707.05849]

$F = \frac{\Omega_{\rm PBH}}{\Omega_{\rm DM}} F_0^{\rm MW}$

$\frac{M_{\rm NS}R_{\rm NS}}{GM_{\rm NS}R_{\rm NS}}\right)\left(1-e^{-3E_{\rm loss}/(m_{\rm PBH}\bar{v}^2)}\right).$

Observational Implications: Spin

[**MMF**, A. Kusenko PRD 104 (2021) 6, 063008]

Scalar radiation and angular momentum dissipation

 For PBHs to form, scalar radiation r momentum from dark matter halos.

See also: Harada et. al. [arXiv:1707.03595] Harada et. al. [arXiv:2011.00710]

• For PBHs to form, scalar radiation needs to remove both energy and angular

Scalar radiation and angular momentum dissipation

- For PBHs to form, scalar radiation needs to remove both energy and angular momentum from dark matter halos.
- Angular momentum losses can be considered in two contexts:
 - Oscillatory channels (coherent/incoherent)
 - Non-oscillatory channels (bremsstrahlung/surface)

See also: Harada et. al. [arXiv:1707.03595] Harada et. al. [arXiv:2011.00710]

Scalar radiation and angular momentum dissipation

- For PBHs to form, scalar radiation needs to remove both energy and angular momentum from dark matter halos.
- Angular momentum losses can be considered in two contexts:
 - Oscillatory channels (coherent/incoherent)
 - Non-oscillatory channels (bremsstrahlung/surface)
- Moral: Strong long range scalar forces efficiently remove angular momentum from dark matter halos. The resulting PBHs will have low spins at the time of formation.

See also: Harada et. al. [arXiv:1707.03595] Harada et. al. [arXiv:2011.00710]

Angular momentum losses for oscillatory channels

for a given mode are:

$$\frac{dE_{\ell m}}{dt} = \frac{1}{2} |\Lambda_{\ell m}|^2, \qquad \frac{dJ_{\ell m}}{dt} = \frac{m}{2\omega} |\Lambda_{\ell m}|^2 = \frac{m}{\omega} \left(\frac{dE_{\ell m}}{dt}\right)$$

momentum losses are not significant.

• For oscillatory charge distributions, we can find decompose the outgoing waves in a spherical basis. The energy losses and angular momentum losses

• Here, $m = -\ell, ..., \ell$. This shows that if the $\ell = 0$ mode dominates, angular

 \implies Different for electromagnetistm

Angular momentum losses for non-oscillatory channels

- For non-oscillatory motion, radiation escapes isotropically when the viewed from the co-rotating frame of the dark matter halo.
- In the lab frame, scalar quanta are blueshifted (redshifted) when emitted in the direction parallel (antiparallel) to the motion of the halo

 $\frac{dJ}{dt} = -R\frac{dE}{dt}f(v)$

Angular momentum losses for non-oscillatory channels

• We can compare the angular momentum loss to the cooling rate (i.e. the energy loss):

$$rac{ au_{ ext{cool}}}{ au_J} = \mathcal{A}\left(rac{R_0}{R}
ight) rac{f(v)}{v},$$

• For $v \ll 1$ and $R \ll R_0$ then we find that, $J(R) = J_0 \left(\frac{R}{R_0}\right)$

spinless.

$$\mathcal{A} \equiv \frac{M_h}{R_0} \left(\frac{\beta}{M_{\rm Pl}}\right)^2 \gg 1$$

$$\left[-\mathcal{A}\left(\frac{R_0}{R}\right)\right]$$

Angular momentum is removed <u>very</u> efficiently. Black holes formed will be

Primordial black holes: Spins

Formation Mechanism	Mass Range	Spins
Inflationary Perturbations [A. Green review: arXiv:2007.10722]	DM, LIGO, supermassive	Small
SUSY flat directions, Q-balls & IMD [1612.02529, 1706.09003, 1907.10613]	DM	Large
Light scalar Q-balls (not SUSY) [1612.02529, 1706.09003, 1907.10613]	DM, LIGO, supermassive	Large
First order phase transitions See talk by I. Baldes, [2106.05637, 2212.14037, 2307.11639]	DM, LIGO, supermassive	Small (?)
Multiverse bubbles [1512.01819, 1710.02865, 2001.09160]	DM, LIGO, supermassive	Small
<i>Early structure formation and collapse</i> [MMF, A. Kusenko: PRL 126 (2021) 4, 041101] [MMF, A. Kusenko: <i>JCAP</i> 05 (2023) 013] [MMF, Y. Lu, A. Kusenko: arXiv:2308.09094]	DM, LIGO, supermassive	Small [MMF, A. Kusenko PRD 104 (2021) 6, 063008

Evaporating PBHs as a test of high-scale SUSY

[MMF, A. Kusenko, L. Pearce, Y. F. Perez-Gonzales, G. White: arXiv: 2308.15522]

