

UNIVERSITÄT HEIDELBERG ZUKUNFT **SEIT 1386**

Diffusion Models

for LHC event generation

Anja Butter, Nathan Huetsch, Sofia Palacios Schweitzer, Tilman Plehn, Peter Sorrenson, Jonas Spinner arXiv: 2305.10475

IRN Terascale, 26.10.2023

SPONSORED BY THE

Federal Ministry of Education and Research

Why Event Generation?

Vast amount of data collected by collider experiments

Standard Model is probed

Theoretical predictions (simulation) needs to match experimental statistics

Why ML Event Generation?

Figure from https://web.archive.org/web/20220706170326/https://lhc-commissioning.web.cern.ch/schedule/images/LHC-nominal-lumi-projection.png

Why ML Event Generation?

Figure from https://web.archive.org/web/20220706170326/https://lhc-commissioning.web.cern.ch/schedule/images/LHC-nominal-lumi-projection.png

Where ML Event Generation?

Figure from A. Butter et al.: arXiv:2203.07460, R. Winterhalder

Where ML Event Generation?

Figure from A. Butter et al.: arXiv:2203.07460, R. Winterhalder

Where ML Event Generation?

Figure from A. Butter et al.: arXiv:2203.07460, R. Winterhalder

How to be generative

Phase Space

$$x \sim p(x)$$

Difficult to sample from

Observable

Latent Space

$$z \sim \mathcal{N}(0,1)$$

Easy to sample from

How to be generative

$$x \sim p(x)$$

Observable

Invertible Neural Networks (INNs)

Bijective mapping $G_{\theta}(x)$

$$p_{\theta}(x) = p(z) \frac{dz}{dx} = p(z) \left| \frac{\partial \bar{G}_{\theta}(x)}{\partial x} \right|$$

$$\mathcal{L}_{INN} = -\log p_{\theta}(x) = -\log p(\bar{G}_{\theta}(x)) - \log \left| \frac{\partial \bar{G}_{\theta}(x)}{\partial x} \right|$$

Latent Space $z \sim \mathcal{N}(0,1)$

Diffusion Models

Figure from J.Ho et al.: arXiv:2006.11239

Diffusion Models (CFM)

Figure from J.Ho et al.: arXiv:2006.11239

Evolution governed by $\frac{dx}{dt}$

Diffusion Models (CFM)

 $t \sim \mathcal{U}([0,1])$ $x_0 \sim p(x_0), x_1 \sim \mathcal{N}(0, 1) \longrightarrow x(t|x_0) = (1-t)x_0 + tx_1$

Once training is done: W_1 , W_2 , W_3 fixed (*"Network output is deterministic"*)

Bayesianization: We draw each entry from W_1, W_2, W_3 from distribution $q(w \mid \mu_{\phi}, \sigma_{\phi})$

$$\vec{z} = \mathbf{W}_{3}\vec{y}_{2}$$
Output
$$\left\{ \vec{z} \right\} = \frac{1}{N} \sum_{i} \vec{z}_{i}$$

$$\sigma_{pred}^{2} = \frac{1}{N} \sum_{i=1}^{N} \left(\langle \vec{z} \rangle - \vec{z}_{i} \right)^{2}$$

Concrete Application — LHC

3 - 5 final state particles (including jets)

12 - 20 dimensional phase space

Smart preprocessing:

Global Phase Shift

Drop muon masses

→ reduces phase space to 9 - 17 dimensions

Percent level precision (comparable to statistical uncertainty)

Uncertainty well defined

 10^{-2} . normalized 10^{-3} 10^{-4} Model 1.25 - 1.00 - 1.0 10^{1} $\delta[\%]$ 10^{0} 10^{-10}

Percent level precision (comparable to statistical uncertainty)

Uncertainty well defined

-210normalized 10^{-3} 10^{-10} -4<u>Model</u> <u>Truth</u> .25 10^{1} δ [%] 10^{0} 10°

Percent level precision (comparable to statistical uncertainty)

Uncertainty well defined

-210 normalized 10^{-3} 10^{-10} -4<u>Model</u> <u>**Truth**</u> .25 10^{1} 2 10^{0} 10

Percent level precision (comparable to statistical uncertainty)

Uncertainty well defined

<u>BUT:</u> only in one dimensional marginal distributions

0.2 normalized 0.10.0<u>Model</u> Truth 10^{1} 8 10^{0}

 10°

 \sim

Previous studies showed: INNs can reach precision benchmark

Percent level precision (comparable to statistical uncertainty)

Uncertainty well defined

BUT: only in one dimensional marginal distributions

Diffusion Models surpass precision

Previous studies showed: INNs can reach precision benchmark

Percent level precision (comparable to statistical uncertainty)

Uncertainty well defined

BUT: only in one dimensional marginal distributions

Diffusion Models surpass precision

For all non-autoregressiv models: Difficult is to learn **sharp cuts** in correlations

Some tricks already applied

For all non-autoregressiv models: Difficult is to learn **sharp cuts** in correlations

Could an autoregressiv model help?

Some tricks already applied

And now what?

- New, "hyped" ML-Models can compete with current benchmark
- All of them come with their own advantages and disadvantages
- A lot of on-going research (generation speed up, precision, etc.)

Diffusion models show potential to be applied to particle physics tasks

Backup

$$q(x_1, \dots, x_T | x_0) = \prod_{t=1}^T q(x_t)$$
$$q(x_t | x_{t-1}) = \mathcal{N}(x_t; \sqrt{1 - \beta_t} x_t)$$

Figure from J.Ho et al.: arXiv:2006.11239

$$(x_{t-1})$$

x_{t-1}, β_t where β_t follows noise scheduler

...but we don't know

Figure from J.Ho et al.: arXiv:2006.11239

$$-1 | x_t) = \frac{q(x_t | x_{t-1})q(x_{t-1})}{q(x_t)}$$

w $q(x_t) \& q(x_{t-1}) \quad \bigotimes \quad \bigotimes$

$$x_t) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \sigma_{\theta}^2(x_t, t))$$

$$x_T(\theta) = p(x_T) \prod_{t=1}^T p_{\theta}(x_{t-1} | x_t)$$

$$\mathscr{L}_{DDPM} = -\log p_{\theta}(x_0) \approx \frac{1}{2\sigma_t^2} \frac{\beta_t^2}{(1-\beta_t)\bar{\beta}_t} |\epsilon(t) - \epsilon_{\theta}(t)|^2$$

Figure from J.Ho et al.: arXiv:2006.11239

Latent Space $x_T \sim p(x_T)(=\mathcal{N}(0,1))$

$$\frac{1}{2\sigma_t^2} \frac{\beta_t^2}{(1-\beta_t)\bar{\beta}_t} |\epsilon(t) - \epsilon_{\theta}(t)|^2$$
Predicted and actual

noise added at time t

$$\mathscr{L}_{DDPM} = -\log p_{\theta}(x_0) \approx \frac{1}{2\sigma_t^2} \frac{\beta_t^2}{(1-\beta_t)\bar{\beta}_t} |\epsilon(t) - \epsilon_{\theta}(t)|^2$$

Figure from J.Ho et al.: arXiv:2006.11239

Latent Space $x_T \sim p(x_T) (= \mathcal{N}(0,1))$

Denoising

Diffusion Models (CFM)

Figure from J.Ho et al.: arXiv:2006.11239

Diffusion Models (CFM)

Figure from J.Ho et al.: arXiv:2006.11239

How to Bayesianize

1. Replace each linear layer with a Bayesian layer

2. Add additional regularisation term to loss

 \overrightarrow{x}

