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The physics problem
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The problem: Measuring a CP-phase in the top Yukawa coupling 

ℒtt̄H = −
yt

2 [cos αt̄t +
2
3

i sin αt̄γ5t]H

The process: Associated single-top and Higgs production

b

u

W

t

H

d

b

u

t

d

H

W

pp → tHj → (bjj) (γγ) j + ISR Jets



From Theory to Experiment in LHC Physics
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Theory Shower RecoHard process Hadronization Detectors

ℒ(α)

Each event undergoes reconstruction
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ℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒ(α)

Event samples are combined into observable histogram

From Theory to Experiment in LHC Physics



Why is this a problem here?
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Cross-section: 

- very small

- insensitive to variations in α
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Why is this a problem here?
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Hard-scattering   kinematics are sensitivep(xhard |α)

[Figures taken from Butter et al arXiv:2210.00019] 

Cross-section: 

- very small

- insensitive to variations in α
°180 °90 0 90 180

CP-angle Æ [°]

0.01

0.02

0.03

0.04

æ
fi
d

[f
b
]

https://arxiv.org/abs/2210.00019v5


Why is this a problem here?

7

°5 0 5
¢¥t,H

0.00

0.05

0.10

0.15

0.20

0.25

n
or

m
al

iz
ed

0
45

90
13

5
18

0
Æ0 500 1000

pT,H [GeV]

10°7

10°6

10°5

10°4

10°3

10°2

n
or

m
al

iz
ed

0
45

90
13

5
18

0
Æ

Cross-section: 

- very small

- insensitive to variations in α

Hard-scattering   kinematics are sensitivep(xhard |α)

Need analysis method based on kinematics

Likelihood ratio ideal test statistic according to 
Newman-Pearson lemma

[Figures taken from Butter et al arXiv:2210.00019] 
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Going for the likelihood ratio

ℒ(α)
Theory Shower RecoHard process Hadronization Detectors

p(xhard |α)

At hard-scattering level likelihood given by differential cross-section  

Unfortunately we do not measure at hard-scattering level

p(xhard |α) =
1

σ(α)
dσ(α)
dxhard



Going for the likelihood ratio
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ℒ(α)
Theory Shower RecoHard process Hadronization Detectors

p(xhard |α) p(xreco |α)

Need access to the likelihood at reconstruction level!



Going for the likelihood ratio
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Hard-scattering and reconstruction linked by forward transfer probability

Forward transfer probability not known, encoded implicitly in forward simulation chain

ℒ(α)
Theory Shower RecoHard process Hadronization Detectors

p(xreco |xhard, α)p(xhard |α) p(xreco |α)



Going for the likelihood ratio
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Integrate over all possible hard-scattering configurations

ℒ(α)
Theory Shower RecoHard process Hadronization Detectors

p(xhard |α) p(xreco |α)∫dxhard p(xreco |xhard, α)



Going for the likelihood ratio
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Include an efficiency term to account for acceptance of events

Encodes the probability that hard-scattering level configuration will pass reco level cuts

ℒ(α)
Theory Shower RecoHard process Hadronization Detectors

∫dxhard ϵ(xhard, α) =p(xreco |xhard, α)p(xhard |α) p(xreco |α)



Going for the likelihood ratio
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ℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒℒ(α)

∏
events i

p(xreco,i |α)

Event likelihoods are combined into sample likelihoods



The Matrix Element Method
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+++ Unbinned and multivariate by design

+++ Optimal use of information derived from Newman-Pearson lemma

—— Transfer probability and efficiency not known

—— Integral numerically very challenging

ℒ(α)
Theory Shower RecoHard process Hadronization Detectors

∫dxhard ϵ(xhard, α) =p(xreco |xhard, α)p(xhard |α) p(xreco |α)



The Matrix Element Method
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+++ Unbinned and multivariate by design

+++ Optimal use of information derived from Newman-Pearson lemma

—— Transfer probability and efficiency not known  USE MACHINE LEARNING

—— Integral numerically very challenging  USE MACHINE LEARNING

ℒ(α)
Theory Shower RecoHard process Hadronization Detectors

∫dxhard ϵ(xhard, α) =p(xreco |xhard, α)p(xhard |α) p(xreco |α)



∫ dxhard p(xhard |α) p(xreco |xhard, α) ϵ(xhard, α) = p(xreco |α)

The Transfer Network
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p(xreco |xhard, α)
Intrac

table



∫ dxhard p(xhard |α) p(xreco |xhard, α) ϵ(xhard, α) = p(xreco |α)

The Transfer Network

p(xreco |xhard)
Intrac

table
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∫ dxhard p(xhard |α) p(xreco |xhard, α) ϵ(xhard, α) = p(xreco |α)

The Transfer Network
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Transfer probability is analytically intractable

Transfer can be simulated to generate paired data   xhard , xreco

Generative Neural Network to encode the transfer probability

p(xreco |xhard)
Intrac

table



∫ dxhard p(xhard |α) p(xreco |xhard) ϵ(xhard, α) = p(xreco |α)

The Acceptance Network
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ϵ(xhard, α)
Unkno

wn



The Acceptance Network
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∫ dxhard p(xhard |α) p(xreco |xhard) ϵ(xhard, α) = p(xreco |α)ϵ(xhard)
Unkno

wn



Efficiency at hard-scattering level is unknown

Transfer can be simulated to generate labeled data   xhard → xreco(xhard)

The Acceptance Network
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Classifier Neural Network to encode the acceptance probability

∫ dxhard p(xhard |α) p(xreco |xhard) ϵ(xhard, α) = p(xreco |α)ϵ(xhard)
Unkno

wn

✅

❌



The Sampling Network
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p(xreco |α) = ∫ dxhard p(xhard |α) p(xreco |xhard) ϵ(xhard)



The Sampling Network
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p(xreco |α) = ∫ dxhard p(xhard |α) p(xreco |xhard) ϵ(xhard)

= ⟨ 1
q(xhard)

p(xhard |α) p(xreco |xhard) ϵ(xhard)⟩xhard∼q(xhard)



The Sampling Network
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p(xreco |α) = ∫ dxhard p(xhard |α) p(xreco |xhard) ϵ(xhard)

= ⟨ 1
q(xhard)

p(xhard |α) p(xreco |xhard) ϵ(xhard)⟩xhard∼q(xhard)

Integral becomes trivial if : q(xhard) ∝ p(xhard |xreco, α)ϵ(xhard)



The Sampling Network
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p(xreco |α) = ∫ dxhard p(xhard |α) p(xreco |xhard) ϵ(xhard)

= ⟨ 1
q(xhard)

p(xhard |α) p(xreco |xhard) ϵ(xhard)⟩xhard∼q(xhard)

Integral becomes trivial if : q(xhard) ∝ p(xhard |xreco, α)ϵ(xhard)

Generative Neural Network to encode sampling distribution

r ∼ platent(r) ⟷ xhard(r) ∼ qϕ(xhard)



Machine-learned MEM
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p(xreco|↵) = 1
�fid h 1

q(xhard)
d�(↵)
dxhard

✏(xhard)
p(xreco|
xhard) i

Sampling
network

Transfer
network

Acceptance
network

↵

xreco

{r | r ⇠ platent(r)}

{xhard}
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Baseline Results
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Transfer-Diffusion Results
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Estimating Uncertainty
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Integration uncertainty:
Resample the MC points using bootstrapping

Network uncertainty:
Use Bayesian NN and resample for each replica
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Estimating Calibration

Divide the 10k events into 100 samples of 100 events

Look at this distribution of the minima around the true α
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Summary and Outlook
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Modern machine learning makes the MEM tractable and scaleable
 
    We present a  state-of-the-art three network setup consisting of

1) Transfer-Network encoding the transfer probability 
2) Acceptance-Network encoding the efficiency 
3) Sampling-Network encoding the proposal distribution  

 Bootstrapping and Bayesian NNs allow us to capture the uncertainties

p(xreco |xhard)
ϵ(xhard)

q(xhard)

 
 Extend our formalism to NLO, both on the physics and the ML side

 Test our setup on an actual analysis and/or more challenging processes
 


