# Millisecond pulsars and the Fermi GeV excess

#### **Joanna Berteaud**

#### In collaboration with Francesca Calore and Maïca Clavel

Assemblée générale Enigmass, October 2023









data with point sources masked =

diffuse emission (ICS, Bremsstrahlung,  $\pi^{0}$ ) + Fermi Bubbles + isotropic emission



#### Spectrum of the Fermi GeV excess



Murgia S. 2020. Annu. Rev. Nucl. Part. Sci. 70:455–83













#### Millisecond pulsar basics



#### Millisecond pulsar basics



y rays

Radio

#### The Galactic MSP population



#### eesa

- More than 250 MSP pulsations detected in radio
- Diffuse γ-ray emission seen by the Fermi-LAT

#### The Galactic MSP population



#### eesa

### The Galactic MSP population



#### (Millisecond) Pulsars at the Galactic center

Probes of:

- The Fermi GeV Excess, its dark matter origin
  The free electron and cosmic-ray source densities
  - The gravitational potential of the region
  - Theories of gravity

• ...

The Galactic center shows:

- A large stellar density
- A profusion of massive stars

 $\rightarrow$  ideal place to find compact objects

I. Simulation and X-ray detectability of the Galactic bulge MSP population Berteaud et al. (2021)

Monte Carlo simulation available on

|                           | Disk | Bulge |
|---------------------------|------|-------|
| Number density            |      |       |
| γ-ray luminosity function |      |       |
| X-ray emission model      |      |       |

Monte Carlo simulation available on

|                           | Disk                                             | Bulge Zenodo!                                 |
|---------------------------|--------------------------------------------------|-----------------------------------------------|
| Number density            | ~100 γ-ray detected MSPs<br>Bartels et al. 2018b | Fermi GeV excess data<br>Bartels et al. 2018a |
| γ-ray luminosity function | Broken power-law<br>Bartels et al. 2018b         | Same as in the disk                           |
| X-ray emission model      |                                                  |                                               |

Monte Carlo simulation available on

|                           | Disk                                             | Bulge Zenodo!                                         |
|---------------------------|--------------------------------------------------|-------------------------------------------------------|
| Number density            | ~100 γ-ray detected MSPs<br>Bartels et al. 2018b | Fermi GeV excess data<br>Bartels et al. 2018a         |
| γ-ray luminosity function | Broken power-law<br>Bartels et al. 2018b         | Same as in the disk                                   |
| X-ray emission model      | γ-to-X flux ratio correlated v                   | vith the X-ray spectral index<br>Berteaud et al. 2021 |



Monte Carlo simulation available on Zenodo!

|                                                                                                                                                                                                                     | DISK                                             | Buige                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Number density                                                                                                                                                                                                      | ~100 γ-ray detected MSPs<br>Bartels et al. 2018b | Fermi GeV excess data<br>Bartels et al. 2018a                                                                                                      |
| γ-ray luminosity function                                                                                                                                                                                           | Broken power-law<br>Bartels et al. 2018b         | Same as in the disk                                                                                                                                |
| X-ray emission model                                                                                                                                                                                                | γ-to-X flux ratio correlated v                   | with the X-ray spectral index<br>Berteaud et al. 2021                                                                                              |
| 4<br>2<br>5<br>6<br>6<br>9<br>0<br>-2<br>-4<br>-4<br>-4<br>-2<br>-4<br>-2<br>-4<br>-2<br>-2<br>-4<br>-2<br>-2<br>-2<br>-4<br>-2<br>-2<br>-2<br>-2<br>-4<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2 | 4                                                | 10 <sup>3</sup><br>10 <sup>2</sup><br>10 <sup>1</sup><br>10 <sup>-21</sup> 10 <sup>-19</sup> 10 <sup>-17</sup> 10 <sup>-15</sup> 10 <sup>-13</sup> |
| l [deg]                                                                                                                                                                                                             | l [deg]                                          | F <sup>abs</sup> [erg/cm²/s]                                                                                                                       |

#### X-ray detectability of the Galactic MSP population



- Detectable simulated MSP: MSP simulated flux > Chandra sensitivity
- About 100, minor contribution from the disk (Berteaud et al. 2021)

#### X-ray detectability of the Galactic MSP population



- Detectable simulated MSP: MSP simulated flux > Chandra sensitivity
- About 100, minor contribution from the disk (Berteaud et al. 2021)
- Between 5.2 and 11.9 kpc, at 8.5 kpc on average
- Hard X-ray sources

#### II. Selection of MSP candidates Berteaud et al. (2021 & 2023, in prep.)

#### Selection of MSP candidates

1. From the Chandra catalog:

- Non-variable
- Non-extended
- Hard sources

2. Distance constraints with Gaia:

- at bulge distance (Bailer-Jones, 2021)
  - ~3200 candidates > 95 expected

### Selection of MSP candidates



1. From the Chandra catalog:

- Non-variable
- Non-extended
- Hard sources

2. Distance constraints with Gaia:

- at bulge distance (Bailer-Jones, 2021)
  - ~3200 candidates > 95 expected



#### Cumulative X-ray emission of MSP candidates



#### ~1400 MSP candidates: contaminated by

cataclysmic variables (CVs)

#### Cumulative X-ray emission of MSP candidates



~1400 MSP candidates: contaminated by cataclysmic variables (CVs)

#### Cumulative X-ray emission of MSP candidates



Interesting population of X-ray sources without optical/UV/IR emission. What are they?

#### Radio counterparts

- NRAO VLA Sky Survey: sources above 2.5 mJy, too high for bulge MSPs
- Unpublished VLA data (PI: M. Kerr): 18 radio counterparts



→ 6 interesting candidates selected for follow-up studies

#### III. Radio timing follow-ups

## Radiometer equation



Radiometer equation:  $\rightarrow$  minimum detectable flux S<sub>min</sub>  $\rightarrow$  as a function of pulsar period P

$$S_{min}(P) \alpha \sqrt{\frac{w}{T_{obs}(P-w)}}$$

## Radiometer equation



Radiometer equation:

- $\rightarrow minimum \ detectable \ flux \ S_{min}$
- $\rightarrow$  as a function of pulsar period P

#### Hardest detections:

- High electron column density (DM)
- Short pulsar period
- Binary system
- Low flux

#### See also Calore et al. (2016)

#### Observations with Parkes and the GBT



#### Observations with Parkes and the GBT



#### Take-home messages

- The Galactic center is a perfect place to look for compact objects
  - Chandra likely detected bulge MSPs in past observations
  - Enough Chandra sources are MSP candidates: the MSP hypothesis **cannot be excluded**
- Deep targeted pulsation searches are ongoing, preliminary results are encouraging

#### Take-home messages

- The Galactic center is a perfect place to look for compact objects
  - Chandra likely detected bulge MSPs in past observations
  - Enough Chandra sources are MSP candidates: the MSP hypothesis **cannot be excluded**
- Deep targeted pulsation searches are ongoing, preliminary results are encouraging

#### **Thank you for your attention!**