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From hadronic jets to dark showers
Outline

Research activities during the last two years:

1. Detector performance: Calibration of hadronic

jets using Machine Learning techniques with
the ATLAS detector

2. Phenomenology: Dark Quantum

Chromodynamics sector and simulation of dark
showers

3. Physics analysis: Search for dark matter with a

/' mediator and emerging jets using ATLAS
Run-3 data




Calibration of hadronic jets
Motivation

Parton level

Calibration of jet constituents — Better
reconstruction of the energy flow details

e Better substructure reconstruction
e Help mitigating topologies effect P
e |Longer term may help with

event-shape variables
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Calibration of hadronic jets
Motivation

Group constituents in a graph:

e Nodes == constituents in (n,p) plane

e Account for spatial relations between constituents

e (ould help to correct for energy losses or EM/hadronic nature of showers
Constrain constituents E & angles with R=0.2 jet-level quantities:

e |.e. constrain node-level predictions with graph-level predictions
Correction factors and loss function

e Predict corrections for constituents’ energy and/or y and/or ¢

e (onstrain this prediction factor and choose a loss in the form of:

L L energ\/ + L \/ + L mass

jet
where LJ eneT8Y = | eaky Gaussian Kernel loss because |t predlcts better mode of distribution than
Mean Squared Error: going to constrain jet energy factor



Calibration of hadronic jets
Graph Neural Network

Using Graph Neural Networks to calibrate jet constituents: performing
node-level (constituents) regression from graph-level (jets) constraints

~"embedded vectors"
" of neighbour nodes
in the graph

"Message passing block".
| Can be repeated N times
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Calibration of hadronic jets
Graph Neural Network

e Once GNN trained apply to list of constituents
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Calibration of hadronic jets
Performance evaluation
Evaluation of the calibration performances with

R=1.0 and R=0.4 jets:
e (heck physics jets energy and mass

response

e Rebuild jets with GNN calibrated
constituents

e Distributions of ratio £_,/E.  and
Mca//b_ true

e (onsider scale and resolution
= Get this response in many energy and/or
mass bins!




Calibration of hadronic jets
Energy scale and resolution

Energy scale is well reconstructed - almost as well as standard ATLAS
calibration
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Calibration of hadronic jets
Energy scale and resolution

e Energy scale is well reconstructed - almost as well as standard ATLAS
calibration
e Energy resolution is improved

Re igr
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Calibration of hadronic jets
Mass scale and resolution

e Mass scale is improved wrt to no calibration — Not just due to energy scaling,
GNN seems to learn more

E €[400, 600] il
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Calibration of hadronic jets
Mass scale and resolution

e Mass resolution is improved wrt to standard ATLAS calibration

0.6
E €[400, 600] =
0.5 M € [100 140] —— gnnno MP
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For small-R jets: Promising results also for energy scale and resolution (especially at the
central n bins) but with a mass scale not yet fully corrected at 1
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Dark Quantum Chromodynamics sector
Motivation

e Dark particles can be produced at hadron colliders via a portal (interactions) between the
SM and the dark sector

e Jets from the dark particles can decay to SM particles at the distinct ATLAS sub-detectors

e Depending on the dark jet properties, a rich set of potential final states can be considered:
delayed signals, disappearing tracks, displaced tracks/vertices, isolated calorimeter energy

deposits, ...

diséppearing or

displaced kinked tracks
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A

Dark Quantum Chromodynamics sector :}@
Snowmass Project on dark showers :

¢“0T
Snowmass project focusing on a systematic survey of a dark QCD sector with a new force from
non-Abelian gauge group
e Theory: QCD-like scenarios of dark sector and beyond (Soft-Unclustered-Energy Patterns,
glueballs, etc)

e Phenomenology: Benchmarks from the underlying physical parameters for semi-visible
jets and simulation of dark showers

e Experiment: Improvement of the search strategies with event-level variables, Graph
Neural Networks, Autoencoders, etc

Tiny = 0 0<rinv <1 Tinvy = 1

£ 44
Gt
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Dark showers

Semi-visible jets

Snowmass 2021 report: theory, phenomenology,
and experimental avenues for dark showers.
Eur. Phys. J. €82, 1132 (2022) (54 authors)

Focusing on the semi-visible jets, possible pathways for consistent theory frameworks were

discussed:

e Tentative to build coherent benchmarks

Regime N, Ny Ay Q My, Mp, Stable Dark hadron
(GeV] [GeV] | [GeV] | dark hadrons decays
My > My, [2 | 34 10 | (1,23-4)| 17 | 3177 All m, 5 qq
Py = Ty 4
3.3 5 Various 3 12.55 0/1/2n9 o E 7r3/:t7rv¢
Mgy B8 M2 ’ 70 — ce
: E— . 0 ES 0/E_+
3,3 10 Various 6 26 0/1/2 P Wy T w]
WS — cc
3,3 50 | Various | 30 | 1255 | 0/1/270 | pYF = 2V FnF
7r_g — CcC

e lattice computations also considered as by fixing mass ratios with respect to the

confinement scale A\

e Overview of the decays of dark hadronic bound states that are either stable (decaying
within the dark sector) or decay to final states including SM particles
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https://link.springer.com/article/10.1140/epjc/s10052-022-11048-8

Dark showers
Pythia Hidden Valley update

An updated Pythia8 Hidden Valley
module is available:

e Full flavour splitting for dark
mesons: now possible to access all
PDGIDs 4900ij3 (with decays,
masses and lifetimes)

e Possibility to add a suppression
factor in the production of the
highest flavour diagonal meson

Study performed targeting the flavour
splitting parameters validation focusing
onthe pp—Z'— q,q_ process

(m,, =1TeV, A, =10 GeV)

HV MODULE DOMAIN

............................

Hard process

o

Yoo Z g4,

..........................
o D

Dark hadrons
7,p STABLE
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10 NCD=3’ Nf =8, AD=10 GeV, mn/AD=0-6
"""""""""" Pythia 8307, SFon

---------- Pythia 8307, SFoff

T IIHII|

Dark showers
Pythia Hidden Valley update "«

1072

Normalized to 1

T IIIIHII T IIIIIII|

Validation executed considering the N_=3 with N =3

and N, =8 cases (N, < 3N ): e
e With flavour splitting, 9 pseudo-scalars and 9 1oL T
. . -800 600 400 -200 0O 200 400 600 800

vectors dark mesons for the N, =3 scenario while Dark  ID (-4900000)
64 different dark mesons states can be accessed 3 ,,C

. ha = N =3, N1D=8, Ap=10 GeV, m /A,=0.6
with N, =8 5 F e Pythia 8245, SFoff

f E 1E :

e For both cases, dark mesons present lower 5 Pythia 8307, SFon
multiplicity and softer pT due to new pT 0 ryiasor, St
suppression for mini-strings fragmentation with 102
the new module oL

e In general, similar distributions for the new module

. . . 107 b .
with flavour splitting switched on and offandno g 2F .
. . . . o B
relevant impact on event kinematic variables e
o ____—=—0——|—

0 5 10 15 20 25 1 6
Number of p dark mesons



Search for emerging jets
Motivation

Search for s-channel production of dark quarks via Z' mediator using Run-3 data ;
Never searched for before at the LHC with a new dedicated trigger and improved large- radius

tracking!
Dark hadrons can decay in a QCD-like way and dark pions can have a non-null lifetime:

high multiplicity of displaced vertices and tracks
Selection: Two large-radius (R=1.0) jets with multiple secondary vertices
Benchmark models

o

Model A Model C Model D
g m, (GeV) 5 10 20
'43 = ¢z, (mm) 5-50
5 myz (GeV) 600-1500-3000
Decay to SM Dark pions to quarks
e e Dark rhos to dark pions
100 sector 17

% of Invisibles (in a jet)
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Search for emerging jets
Challenges - Tracks + Vertices

Key phenomenological and experimental challenges:
e Selection of experimentally appropriate models for dark QCD signals

Track Efficiency vs Production Vertex Radius Track Efficiency vs Production Vertex Radius
- Model D, all Z' masses and Iow:rd lifetime § - All models, low Z' mass and high-(d lifetime
— o 1.4
E m, =20 GeV, m, =600 GeV, ¢t = 5 mm thJ C m,, =5 GeV, m, = 600 GeV, ct = 50 mm
— m,, =20 GeV, m, = 1500 GeV, ct=5mm 1'2__ m,, =10 GeV, m, = 600 GeV, ct = 50 mm
- m,, =20 GeV, m, = 3000 GeV, ct = 5 mm - m,, =20 GeV, m, =600 GeV, ct = 50 mm
1 — 1 -
_!‘%—hl —
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Search for emerging jets

Challenges - Jets

Effective reconstruction and selection of jets,
tracks and vertices = Custom Large-R jet
reconstruction reclustering R=0.4 EMTopo
jetsinto R=1.0 jets
e Able to better reproduce Z' mass (mjj)
than LCTopo and UFO jets
e (alibration comes “for free” by using
calibrated R=0.4 EMTopo jets

LCTopo = Topoclusters with local cell weight
UFO = Unified Flow Objects

RC EMTopo = Re-clustered EM-scale
topocluster jets
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T

e |

500

| Model-D, mZ'=1.5 TeV, cTro = 50 mm

|
)
' r|+ l ATLAS Work in progress

e | CTopo
b e UFO
e RC EMTopo

1 1 | — I {— | — = T
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|
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jet1t2_mdJ

72000 2500
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g B LLP4_ModelD_1500_1
% *: ‘ - S LLP4ﬁModelDf}1500450 :
Search for emerging jets HTHH |
Challenges - Trigger bl
o
Considering two large-R jet triggers: I | Hll }
1. Dedicated emerging jets trigger developed for Wi w I
Run 3 oL '260‘ o ‘360' - '400' - '5(1)0‘ - 'eclaoj - '7c]>o‘ —
o Require jet with pT > 200 GeV, |n| < 1.8, o
and “prompt track fraction” PTF < 0.08 L s won T l.lgl Aoioger, o=t (00 p 27600, N, =
% 3 ATLAS Work in Progre ¢ V\Il-u+iet | |
Z P k(d <9 5()‘(d )) 21-2_ \s=13.6TeV, 27.0 fb” ¢ dam ]
ke T N#) 0 wo.r ]
Pr osl . ]
2. Standard Large-R jet trigger: with a high pT 04 | . g
threshold for Level 1 (100 GeV) and High-Level o2t -
Trigger (460 GeV) PPN ST T

0
300 400 500 600 700 800 900 1000
Leading Jetp_ 20



Search for emerging jets
Challenges - Discrimination

e Discrimination of emerging jets and SM di-jets background = Di-jet mass and jet
substructure variables, ABCD methods and a new emerging jets tagger using Graph
Neural Networks

LI B B A e S i e IR BUELELES IR LR BB

= T T T T = % e ., ——r — ——
0osf— ATEAS  Work in progress [ = 5 025 ATLAS  Work in progress sa : =
o : H H H e LA20 _rho40 pi10 Zp1500 I5.RC aprd = ) - : FH Ld10_rho20_pi 500 15. pr3
= i i i ———— Ld20_rhod0_pi10_Zp1500 IS0.RC_apr3 | < 02 H . 7 e BB AT R e
0.07— dff H t : = 02— H —
= Immerent:CTrd E E. . S 3
TS e o i = z E
. B BKG3 CBKG different mea =
0.05== e = 0.14f— : nd —
F c7,, =50mm i = i 3 : : E
00— T, : = E m, =5GeV 3
- = 01— ‘ . i =
ooaf- i = 0osb m, =10 GeV 3
- : 3 = - =20 GeV i =
= : = =4 m_=20GeV i -3
0.02p— — = H 3
- = 0.04f— i —
00— — 0.02F— -
o E = C e i 3
o | 0
als T
5 4 zi12 2
) ? 08
g 3 06
2 04
> 02
0
0 3500

prompt track fraction



GNN representation

Search for emerging jets =20

Combined
Inj

Challenges - Discrimination

-0
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ap
twor twor jetwork:

Discrimination of emerging jets and SM di-jets background = Di-jet mass and jet

substructure variables, ABCD methods and a new emerging jets tagger using Graph
Neural Networks

Selecfon: Muon Trigger, N =1,N_ =22

|2
- . At [ prompt_jet S ATLAS —
5 ATLAS Simulation  workin Progress bt $ 1| B=136Tev,270"
10" 4 B disp_jet w 5 o dala
s W WG St Unc.
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Conclusions &
Next steps

Calibration of hadronic jets using Machine Learning techniques with the ATLAS
detector

e Promising results: obtained convergence to reasonable corrections when constraining only energy and
rapidity
e GNN seem to learn physical features and physics performance comparable to standard ATLAS calibration
e Limitations in performance are being investigating with more advanced techniques
Dark Quantum Chromodynamics sector and simulation of dark showers
e Overview of existing efforts and of the signature landscape for QCD-like and beyond scenarios
e Improvements to the Pythia Hidden Valley module (motivated by the theory) validated for different viable
scenarios with high-level variables
Search for dark matter with a Z' mediator and emerging jets using ATLAS data
e Run-3 early data analysis going strong!

e Finalize trigger strategy and baseline event selection and optimize ABCD plane observables
e Aiming a publication around Moriond 2024
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Many thanks!
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