# **EXPERIMENT**



**GRENOBLE | MODANE** 

## From hadronic jets to dark showers: an exciting search for new physics

SS

Ana Peixoto (LPSC Grenoble → University of Washington) With Pierre-Antoine Delsart and Marie-Helene Genest Assemblée Générale Enigmass2 @ Annecy 20<sup>th</sup> October 2023 UNIVERSITY of WASHINGTON

## From hadronic jets to dark showers Outline

Research activities during the last two years:

- 1. <u>Detector performance</u>: Calibration of hadronic jets using Machine Learning techniques with the ATLAS detector
- 2. <u>Phenomenology:</u> Dark Quantum Chromodynamics sector and simulation of dark showers
- <u>Physics analysis:</u> Search for dark matter with a Z' mediator and emerging jets using ATLAS Run-3 data





## Calibration of hadronic jets Motivation

Calibration of jet constituents  $\rightarrow$  Better reconstruction of the energy flow details

- Better substructure reconstruction
- Help mitigating topologies effect
- Longer term may help with event-shape variables

Building very small (R=0.2) jets:

- Small enough: fine angular resolution
- Big enough: contains several constituents





 $\text{Loss} = \lambda_1 (E_{pred} - E_{true})^2 + \lambda_2 (M_{pred} - M_{true})^2$ 

## Calibration of hadronic jets Motivation

Group constituents in a graph:

- Nodes == constituents in  $(\eta, \phi)$  plane
- Account for spatial relations between constituents
- Could help to correct for energy losses or EM/hadronic nature of showers Constrain constituents E & angles with R=0.2 jet-level quantities:
- I.e. constrain node-level predictions with graph-level predictions Correction factors and loss function
- Predict corrections for constituents' energy and/or y and/or  $\phi$
- Constrain this prediction factor and choose a loss in the form of:

 $L = L_{jet}^{energy} + L_{jet}^{y} + L_{jet}^{mass}$ where  $L_{jet}^{energy}$  = Leaky Gaussian Kernel loss because it predicts better mode of distribution than Mean Squared Error: going to constrain jet energy factor

## Calibration of hadronic jets Graph Neural Network

• Using Graph Neural Networks to calibrate jet constituents: performing node-level (constituents) regression from graph-level (jets) constraints



## Calibration of hadronic jets Graph Neural Network

• Once GNN trained apply to list of constituents



## Calibration of hadronic jets Performance evaluation

Evaluation of the calibration performances with R=1.0 and R=0.4 jets:

- Check physics jets energy and mass response
- Rebuild jets with GNN calibrated constituents
- Distributions of ratio  $E_{calib}/E_{true}$  and  $M_{calib}/M_{true}$
- Consider scale and resolution
- ⇒ Get this response in many energy and/or mass bins!



## Calibration of hadronic jets Energy scale and resolution

• Energy scale is well reconstructed - almost as well as standard ATLAS calibration



## Calibration of hadronic jets Energy scale and resolution

- Energy scale is well reconstructed almost as well as standard ATLAS calibration
- Energy resolution is improved



## Calibration of hadronic jets Mass scale and resolution

 Mass scale is improved wrt to no calibration → Not just due to energy scaling, GNN seems to learn more



10

## Calibration of hadronic jets Mass scale and resolution

• Mass resolution is improved wrt to standard ATLAS calibration



For small-R jets: Promising results also for energy scale and resolution (especially at the central  $\eta$  bins) but with a mass scale not yet fully corrected at 1

## Dark Quantum Chromodynamics sector Motivation

- Dark particles can be produced at hadron colliders via a portal (interactions) between the SM and the dark sector
- Jets from the dark particles can decay to SM particles at the distinct ATLAS sub-detectors
- Depending on the dark jet properties, a rich set of potential final states can be considered: delayed signals, disappearing tracks, displaced tracks/vertices, isolated calorimeter energy deposits, ...



## Dark Quantum Chromodynamics sector Snowmass Project on dark showers



Snowmass project focusing on a systematic survey of a dark QCD sector with a new force from non-Abelian gauge group

- **Theory:** QCD-like scenarios of dark sector and beyond (Soft-Unclustered-Energy Patterns, glueballs, etc)
- **Phenomenology:** Benchmarks from the underlying physical parameters for semi-visible jets and <u>simulation of dark showers</u>
- **Experiment:** Improvement of the search strategies with event-level variables, Graph Neural Networks, Autoencoders, etc



## Dark showers Semi-visible jets

Snowmass 2021 report: theory, phenomenology, and experimental avenues for dark showers. Eur. Phys. J. C 82, 1132 (2022) (54 authors)

Focusing on the semi-visible jets, possible pathways for consistent theory frameworks were discussed:

• Tentative to build coherent benchmarks

| Regime                     | $N_c, N_f$ | $\Lambda_v$ | Q           | $m_{\pi_v}$ | $m_{ ho_v}$ | Stable             | Dark hadron                                    |
|----------------------------|------------|-------------|-------------|-------------|-------------|--------------------|------------------------------------------------|
|                            |            | [GeV]       |             | [GeV]       | [GeV]       | dark hadrons       | decays                                         |
| $m_{\pi_v} > m_{\rho_v}/2$ | 3,4        | 10          | (-1,2,3,-4) | 17          | 31.77       | All $\pi_v$        | $\rho_v^0 \to q\overline{q}$                   |
|                            |            |             |             |             |             |                    | $ ho_v^{\pm} 	o \pi_v^{\pm} q \overline{q}$    |
|                            | 2.2        | 5           | Various     | 3           | 12.55       | $0/1/2\pi_{v}^{0}$ | $\rho_v^{0/\pm} \to \pi_v^{0/\pm} \pi_v^{\mp}$ |
| $m_{\pi_v} < m_{\rho_v}/2$ | 3,3        |             |             |             |             |                    | $\pi_v^0 \to c \overline{c}$                   |
| 5                          | 3,3        | 10          | Various     | 6           | 26          | $0/1/2  \pi_v^0$   | $\rho_v^{0/\pm} \to \pi_v^{0/\pm} \pi_v^{\mp}$ |
|                            |            |             |             |             |             |                    | $\pi_v^0 \to c\overline{c}$                    |
|                            | 3,3        | 50          | Various     | 30          | 125.5       | $0/1/2  \pi_v^0$   | $\rho_v^{0/\pm} \to \pi_v^{0/\pm} \pi_v^{\mp}$ |
|                            |            |             |             |             |             |                    | $\pi_v^0 \to c \overline{c}$                   |

- Lattice computations also considered as by fixing mass ratios with respect to the confinement scale  $\Lambda$
- Overview of the decays of dark hadronic bound states that are either stable (decaying within the dark sector) or decay to final states including SM particles

## Dark showers Pythia Hidden Valley update

## An updated Pythia8 Hidden Valley module is available:

- Full flavour splitting for dark mesons: now possible to access all PDGIDs 4900ij3 (with decays, masses and lifetimes)
- Possibility to add a suppression factor in the production of the highest flavour diagonal meson

Study performed targeting the flavour splitting parameters validation focusing on the  $pp \rightarrow Z' \rightarrow q_d q_d$  process (m<sub>z'</sub> = 1 TeV,  $\Lambda_d$  = 10 GeV)



HV MODULE DOMAIN

## Dark showers Pythia Hidden Valley update

Validation executed considering the  $N_c = 3$  with  $N_f = 3$ and  $N_f = 8$  cases ( $N_f < 3 N_c$ ):

- With flavour splitting, 9 pseudo-scalars and 9 vectors dark mesons for the N<sub>f</sub> =3 scenario while 64 different dark mesons states can be accessed with N<sub>f</sub> =8
- For both cases, dark mesons present lower multiplicity and softer pT due to new pT suppression for mini-strings fragmentation with the new module
- In general, similar distributions for the new module with flavour splitting switched on and off and no relevant impact on event kinematic variables



## Search for emerging jets Motivation

- Search for *s*-channel production of dark quarks via Z' mediator using Run-3 data
  - **Never searched for before at the LHC** with a new dedicated trigger and improved large-radius tracking!
- Dark hadrons can decay in a QCD-like way and dark pions can have a non-null lifetime: high multiplicity of displaced vertices and tracks
- Selection: Two large-radius (R=1.0) jets with multiple secondarv vertices



|                         | Model A                 | Model C | Model D |  |  |  |
|-------------------------|-------------------------|---------|---------|--|--|--|
| $m_{\pi_d}$ (GeV)       | 5                       | 10      | 20      |  |  |  |
| $c	au_{\pi_d}$ (mm)     | 5-50                    |         |         |  |  |  |
| $m_{Z'}(\text{GeV})$    | 600-1500-3000           |         |         |  |  |  |
| Decay to SM             | Dark pions to quarks    |         |         |  |  |  |
| Decay in dark<br>sector | Dark rhos to dark pions |         |         |  |  |  |

#### **Benchmark models**

## Search for emerging jets Challenges - Tracks + Vertices

Key phenomenological and experimental challenges:

Selection of experimentally appropriate models for dark QCD signals
 Track Efficiency vs Production Vertex Radius
 Track Efficiency vs Production Vertex Radius



18

## Search for emerging jets Challenges - Jets

Effective reconstruction and selection of jets, tracks and vertices ⇒ Custom Large-R jet reconstruction reclustering R=0.4 EMTopo jets into R=1.0 jets

- Able to better reproduce Z' mass (m<sub>jj</sub>) than LCTopo and UFO jets
- Calibration comes "for free" by using calibrated R=0.4 EMTopo jets

LCTopo = Topoclusters with local cell weight UFO = Unified Flow Objects RC EMTopo = Re-clustered EM-scale topocluster jets



## Search for emerging jets Challenges - Trigger

Considering two large-R jet triggers:

- Dedicated emerging jets trigger developed for Run 3
  - $\circ$  Require jet with pT > 200 GeV ,  $|\eta| < 1.8$  , and "prompt track fraction" PTF < 0.08

$$PTF = \frac{\sum_{\text{trk \in jet}} p_{\text{T}}^{\text{trk}}(d_0 < 2.5\sigma(d_0))}{p_{\text{T}}^{\text{jet}}}$$

2. Standard Large-R jet trigger: with a high pT threshold for Level 1 (100 GeV) and High-Level Trigger (460 GeV)



20

## Search for emerging jets Challenges - Discrimination

 Discrimination of emerging jets and SM di-jets background ⇒ Di-jet mass and jet substructure variables, ABCD methods and a new emerging jets tagger using Graph Neural Networks





## Search for emerging jets Challenges - Discrimination



 Discrimination of emerging jets and SM di-jets background ⇒ Di-jet mass and jet substructure variables, ABCD methods and a **new emerging jets tagger using Graph** Neural Networks



# Conclusions & Next steps

## Calibration of hadronic jets using Machine Learning techniques with the ATLAS detector

- Promising results: obtained convergence to reasonable corrections when constraining only energy and rapidity
- GNN seem to learn physical features and physics performance comparable to standard ATLAS calibration
- Limitations in performance are being investigating with more advanced techniques

#### Dark Quantum Chromodynamics sector and simulation of dark showers

- Overview of existing efforts and of the signature landscape for QCD-like and beyond scenarios
- Improvements to the Pythia Hidden Valley module (motivated by the theory) validated for different viable scenarios with high-level variables

#### Search for dark matter with a Z' mediator and emerging jets using ATLAS data

- Run-3 early data analysis going strong!
- Finalize trigger strategy and baseline event selection and optimize ABCD plane observables
- Aiming a publication around Moriond 2024

# Many thanks!

