

A brief history of the Top Quark - an overview -

Introduction

- Strong interaction of the top quark
 Production (SM, anomalous) & spin correlations
- Weak interaction of the top quark single top production & W-helicity in top decays
- Electromagnetic interaction of the top quark
- Top Quark Properties
 - Mass, charge, spin, lifetime
- Conclusion

Introduction

Top Quark in the Standard Model

Top Quark Properties

- Spin=1/2
- Charge=+2/3
- Isospin =+1/2
- t → bW
- V-A decay
- FCNC
- Large C=1.42GeV (m_b, M_w, α_s, EW corr.)
 - short lifetime, observe `free quark decay'
- Yukawa coupling ?

The TEVATRON is probing better than ever the top sector... The LHC will allow precision measurements of Top Quark Physics

Top Quark Physics

The TEVATRON at Fermilab

The TEVATRON at Fermilab

The Large Hadron Collider - LHC

The Large Hadron Collider:
 proton-proton collider (no p̄)
 ◊ 2 separate beampipes

- first collisions in 2008
- high energy: $\sqrt{s} = 14$ TeV
- 40 Mio. collisions per second
 4 experiments:
- ATLAS, CMS, ALICE, LHC-B
 10 fb⁻¹ per year

The Large Hadron Collider - CMS

The Large Hadron Collider - ATLAS

18. October 2007: A Brief History of the Top Quark - Arnulf Quadt – Grenoble

Strong Coupling of the

Top Quark

• ttbar production

(total Xsec, differential Xsec, gg→tt fract., forw.-backw. asymmetry)

- spin correlations
- possible admixture to tt via H[±], stop, narrow resonances ...
- study of ttj, ttjj, ttb, ttbb
 - \Diamond QCD (m, via τ_i) as well as background for tth(h \rightarrow bb)

Decay Topology in $t \overline{t}$

Top quarks decay predominantly (~100%) to a W-Boson and a b-quark

Top-Antitop Signatures:

`dilepton channel'

5% : 2 jets, 2 charged leptons, 2 v

'lepton+jets channel' 30%: 4 jets, 1 charged lepton, 1 ν

'all-jets channel' 40%: 6 jets

always 2 jets are b-jets

Top Quark Production

Some references (not a complete list!): (top pairs) N.Nason *et al.* Nucl.Phys. B303 (1988) 607, S.Catani *et al.* Nucl.Phys. B478 (1996) 273, M.Beneke *et al.* hep-ph/0003033, N.Kidonakis and R.Vogt, Phys.Rev. D68 (2003) 114014, W.Bernreuther et al. Nucl.Phys. B690 (2004) 81-137 (single-top) T.Stelzer et al. Phys.Rev. D56 (1997) 5919, M.C.Smith and S.Willenbrock Phys.Rev. D54 (1996) 6696, T.M.Tait Phys.Rev. D61 (2000) 034001

Top Quark Production Rates

		proton - (anti)proton cross	sections		proce	SS	σ(pb)	ev/s	ev/v	Comparison
e Te	1 0 9		10 ⁹				- (/		Low L	with other experiments
ion r	10 ⁸	σ _{tot}	10^8		bb		5×10 ⁸	10 ⁶	10 ¹³	10 ⁹ Belle/Babar
QC	10 ⁶	Tevatron	LHC 10°		Z→e	e	1.5×10 ³	~3	107	10 ⁷ LEP
inte	10 ⁵	σ	10 ⁵		W→ev	,μν	3×104	~60	10 ⁸	10 ⁵ LEP 10 ⁸ FNAL
	1 0 ⁴		¹ 0 ⁴		WW→€	evΧ	6	10-2	10 ⁵	
	1 0 ³		10 ³	£	tt		830	~1.7	10 ⁷	10 ⁴ Tevatron
	1 0 ²	σ _{jet} (E _T ^{jet} > √s/20)	10 ²		H(130Ge	eV/c²)	2	4×10 ⁻³	10 ⁵	?
<u>a</u>	1 0 ¹	σ			H(700Ge	eV/c ²)	1	2×10 ⁻³	104	?
				₽ / / / / /						
0 (J)	10 [°] 10 ⁻¹	σ_z $\sigma_{jet}(E_T^{jet} > 100 \text{ GeV})$	10° 10°	vents/sec. tor	Year	Max	Lumi F	fop pairs Produce /day	s d	Top pairs(l+j) after selection /day
מ (I)	10 [°] 10 ⁻¹ 10 ⁻²	σ_z $\sigma_{jet}(E_T^{jet} > 100 \text{ GeV})$ σ_{tt}	10° 10° 10^{-1} 10^{-2}	events/sec for	Year 2007	Max 10	Lumi F 132	roduce /day 7 000	s d	Top pairs(I+j) after selection /day ~20-100
а (1) С	10 [°] 10 ⁻¹ 10 ⁻² 10 ⁻³	σ_z $\sigma_{jet}(E_T^{jet} > 100 \text{ GeV})$ σ_t	10^{-1} 10^{-1} 10^{-2} 10^{-3}	events/see for	Year 2007 2008	Max 10	Lumi F 1 ³²	Fop pairs Produce /day 7 000 70 000	s d	Top pairs(I+j) after selection /day ~20-100 ~200-1 000
a (1)	10 [°] 10 ⁻¹ 10 ⁻² 10 ⁻³ 10 ⁻⁴	σ_{z} $\sigma_{jet}(E_{T}^{jet} > 100 \text{ GeV})$ σ_{t} σ_{t} σ_{t} $\sigma_{t}(E_{T}^{jet} > \sqrt{s/4})$	$ \begin{array}{c} 10 \\ 10^{0} \\ 10^{-1} \\ 10^{-2} \\ 10^{-3} \\ 10^{-4} \end{array} $	events/sec for	Year 2007 2008 2009-	Max 10	Lumi F 132 133	Fop pairs Produce /day 7 000 70 000	s d	Top pairs(I+j) after selection /day ~20-100 ~200-1 000
0 (I	10 [°] 10 ⁻¹ 10 ⁻² 10 ⁻³ 10 ⁻⁴ 10 ⁻⁵	σ_{z} $\sigma_{jet}(E_{T}^{jet} > 100 \text{ GeV})$ σ_{t}	$ \begin{array}{c} 10^{-1} \\ 10^{-1} \\ 10^{-2} \\ 10^{-3} \\ 10^{-3} \\ 10^{-5} \\ \end{array} $	avents/sec for	Year 2007 2008 2009- -2010	Max 10 10	Lumi F 132 133 134	Fop pairs Produce /day 7 000 70 0000 70 0000	s d	Top pairs(I+j) after selection /day ~20-100 ~200-1000 -200-1000
a (D	10 ^{°1} 10 ^{°1} 10 ^{°2} 10 ^{°3} 10 ^{°4} 10 ^{°5} 10 ^{°6}	σ_{z} $\sigma_{jet}(E_{T}^{jet} > 100 \text{ GeV})$ σ_{t}	$ \begin{array}{c} 10^{\circ} \\ 10^{\circ} \\ 10^{\circ} \\ 10^{\circ^{2}} \\ 10^{\circ^{3}} \\ 10^{\circ^{4}} \\ 10^{\circ^{5}} \\ 10^{\circ^{6}} \\ \end{array} $	est	Year 2007 2008 20092010 ablish to	Max 10 10 10 10	Lumi F 32 33 34	Top pairs Produce /day 7 000 70 000 70 0000	s d	Top pairs(I+j) after selection /day ~20-100 ~200-1 000 -2 000-10 000
a (D	10 [°] 10 ⁻¹ 10 ⁻² 10 ⁻³ 10 ⁻⁴ 10 ⁻⁵ 10 ⁻⁶ 10 ⁻⁷	σ_{z} $\sigma_{jet}(E_{T}^{jet} > 100 \text{ GeV})$ σ_{t}	10^{-1} 10^{-1} 10^{-2} 10^{-3} 10^{-3} 10^{-5} 10^{-6} 10^{-7}	• este • me	Year 2007 2008 2009- -2010	Max 10 10 10 10 10 10 10	Lumi F 32 33 33 34 34 5 5 5 5 5 5 5 5 5 5 5 5 5	Top pairs Produce /day 7 000 70 0000 70 0000	s d) ~	Top pairs(I+j) after selection /day ~20-100 ~200-1 000 -2 000-10 000

Run II Top Cross Section - Summary

$\sigma_{t\bar{t}}(pb)$	Source $\int \mathcal{L}dt \ (pb^{-1})$	Ref. Method	$\hat{\mathbf{a}}_{t} = \frac{14}{m_{t} = 175 \text{ GeV/c}^{2}}$ status Oct. 2007
	DØ 910 DØ 910 DØ 910 DØ 430 DØ 910 DØ 910 DØ 910 DØ 910 DØ 101 DØ 1050 DØ 160 DØ 370 DØ 360 DØ 360 DØ 220-240	[30] ℓ + jets/vtx <i>b</i> -tag [31] ℓ + jets/0-2 vtx <i>b</i> -tags [32] ℓ + jets/soft μ <i>b</i> -tag [33] ℓ + jets/kinematics [17] τ + jets [34] $\ell\ell$ + ℓ +track/vtx <i>b</i> -tag [35] $e\mu$ /vtx <i>b</i> -tag [36] ℓ +track/vtx <i>b</i> -tag + $e\mu$ [16] $\ell\tau$ /vts <i>b</i> -tag [9] all-jets/vtx <i>b</i> -tags [37] combined	 Bun I CDF Run I DØ (prel., 910 pb⁻¹) Run I DØ Run I DØ (prel., 910 pb⁻¹) Run I DØ Run I DØ (prel., 910 pb⁻¹) (prel., 910 pb⁻¹) Run I DØ (prel., 910 pb⁻¹) (prel.,
$\begin{array}{c} 8.2 \pm 1.1 \\ 7.8 \pm 2.0 \\ 6.0 \pm 1.1 \\ 6.2 \pm 1.4 \\ 8.3 \pm 1.6 \\ 10.1 \pm 2.2 \\ 8.3^{+2.3}_{-1.9} \\ 7.3 \pm 0.9 \end{array}$	CDF 1120 CDF 760 CDF 760 CDF 1200 CDF 1100 CDF 1000 CDF 1020 CDF 760	[38] ℓ + jets/vtx <i>b</i> -tag [39] ℓ + jets/soft μ <i>b</i> -tag [40] ℓ + jets/kinematics [41] $\ell\ell$ [42] ℓ +track [43] ℓ +track+ <i>b</i> -tag [44] all-jets/kin+vtx <i>b</i> -tags [45] combined	 Many channels, both exp.s consistent (> 1fb⁻¹) with NLO SM prediction for 1.96 TeV of ~7 pb⁻¹ approaching ~12% precision, syst. dominated Forward-backward charge asymmetry (8%) \$ first results (CDF & DØ)

Tibar Charge Asymmetry

Tibar Production via Resonances

Does something new (narrow resonance) produce thar pairs? • Lepton $+ \ge 4$ jets with ≥ 1 b-tag in 900 pb⁻¹ • Lepton $+ \ge 4$ jets (with b-tagging) in 1 fb⁻¹ • χ^2 kinematic fit • kinematic fit to ttbar hypothesis • assume SM rate for SM that production SM tibar, diboson, QCD rates free param. • no significant excess observed • no significant excess observed Total Invariant Mass of the tt System **DØ Run II Preliminarv** # tagged events Number of Events 197.0 data 35 CDF Run II Preliminary, L=955 pb $L = 0.9 \text{ fb}^{-1}$ 10.84 Zprime750 Data 30 SM tt non-top Background 3.58 Z+iets 20 9 20 Whb 5 01 W/cc 3.90 Wlp 15 6.27 Multijet 10⁻¹ 10 5 10^{-2} 300 500 600 700 800 900 1000 1100 1200 200 400 800 1000 1200 600 M_{..} [Gev/c²] . [GeV]

Interpretation of $\sigma_{\chi} \bullet BR(X \rightarrow tt)$ limit in terms of mass limit of a Z' in topcolor assisted technicolor (hep-ph/9911288)

CDF: m_x > 720 GeV @95% C.L. DØ:m_x > 680 GeV @95% C.L.

18. October 2007: A Brief History of the Top Quark - Arnulf Quadt – Grenoble

Spin Correlations in $t \overline{t}$

in qq annihilation, opposite-helicity (b) production dominates in gg annihilation, equal-helicity (c) production dominates

Three helicity basis:

A

18. October 2007: A Brief History of the Top Quark - Arnulf Quadt – Grenoble

Spin Correlations at LHC

Main systematic uncertainties: parton generation (PDFs and Q² scale), FSR, b-jet energy scale and top quark mass uncertainty

Both CMS and ATLAS have sensitivity for observing spin correlations after 10 fb⁻¹

18. October 2007: A Brief History of the Top Quark - Arnulf Quadt – Grenoble

 (\mathbb{A})

Weak Coupling of the

Top Quark

- Electroweak single top quark production ("evidence")
 - in SM
 - in alternative models (W' (m>630-790 GeV), FCNC, ...)
- W-helicity in top quark decays

Electroweak Single Top Quark Production

Some references (not a complete list!): (top pairs) N.Nason *et al.* Nucl.Phys. B303 (1988) 607, S.Catani *et al.* Nucl.Phys. B478 (1996) 273, M.Beneke *et al.* hep-ph/0003033, N.Kidonakis and R.Vogt, Phys.Rev. D68 (2003) 114014, W.Bernreuther et al. Nucl.Phys. B690 (2004) 81-137 (single-top) T.Stelzer et al. Phys.Rev. D56 (1997) 5919, M.C.Smith and S.Willenbrock Phys.Rev. D54 (1996) 6696, T.M.Tait Phys.Rev. D61 (2000) 034001

EW Single-Top Production

Each channel sensitive to different signals

> heavy W' →	s-channel
• FCNC +	t-channel
° H±	Wt-channel
W(H⁰→bb) →	s-channel

Also directly related to $1V_{tb}I$ to percent level (s-channel preferred, t-channel dominated by PDF scale uncertainties of ~10%)

Evidence for Single-Top

18. October 2007: A Brief History of the Top Quark - Arnulf Quadt - Grenoble

Single-Top Xsec at LHC

18. October 2007: A Brief History of the Top Quark - Arnulf Quadt - Grenoble

Page 26

Weak Top Decay - Helicity of the W

3 18. October 2007: A Brief History of the Top Quark - Arnulf Quadt – Grenoble

W-helicity in Top Quark Decays

18. October 2007: A Brief History of the Top Quark - Arnulf Quadt - Grenoble

Electromagnetic Coupling

of the

Top Quark

• $e^+e^- \rightarrow \gamma^* \rightarrow tt$ • $tt\gamma$ production @ LHC with 10 fb⁻¹ (coupling \otimes charge)

Top Quark Properties Charge & Mass ...

Top Quark Mass Measurements at Tevatron

dilepton	Neutrino weighting (η → φ)	$\mathbf{\mathbf{\hat{v}}}$	1-dim. fit
	Phi-weighting (φ → η)	\diamondsuit	1-dim. fit
	P _z (tt) method	\diamondsuit	1-dim. fit
	ME weighting	\diamondsuit	1-dim. fit
	ME method	¢	1-dim. fit
Hiole	Template method in m _{top} after kinematic fit,	/ / /	
ITJEIS	topological or b-tag, with internal or external JES constraint	⊳	1- or 2-dim. fit
	Matrix Element/Dynamical Likelihood Method, topological or b-tag, with internal or external JES constraint, complex analysis	\$	1- or 2-dim. fit
	Ideogram method (W-mass @ LEP), compare signal and background mass spectrum, χ ² weighting (kine fit), with internal/external JES constraint	\$	1- or 2-dim. fit
	Decay Length Method, compare transv. Decay lengt	h	
	spectrum with expecation from $c_{\tau}(B) \circ \beta(m_{top})\gamma(m_{top})$	¢	1-dim. fit
alljets	Kinematic fit & ideogram, little sensitivity	¢	1-dim. fit

Top Mass Summary/Combination

 1 fb^{-1}

systematics limited: JES, ttbar/W+j modelling, ...

$m_t~({ m GeV}/c^2)$		Source	$\int \mathcal{L}dt$	Ref.	Method
179.0 ± 5.1	DØ	Run I	110-125	[70]	DØ combined
$169.9 \pm 5.8^{+7.8}_{-7.1}$	DØ	Run II	230	[73]	$\ell + jets/topo, TM$
$170.6 \pm 4.2 \pm 6.0$	DØ	Run II	230	[73]	$\ell{+}{\rm jets/b{-}tag},{\rm TM}$
$170.5 \pm 2.5 \pm 1.4$	DØ	Run II	910	[74]	$\ell{+}{\rm jets}/{\rm topo},{\rm ME}(W\to jj)$
$170.5 \pm 2.4 \pm 1.2$	DØ	Run II	910	[74]	$\ell{+}{\rm jets/b{-}tag},{\rm ME}(W\rightarrow jj)$
$176.6 \pm 11.2 \pm 3.8$	DØ	Run II	370	[75]	$\ell\ell/\text{b-tag}, \mathcal{M}WT$
$177.7 \pm 8.8 \pm 4.5$	DØ	Run II	835	[76]	$e\mu, MWT$
$173.7 \pm 5.4 \pm 3.4$	DØ	Run II	1000	[77]	$\ell\ell, \eta(\nu) + \mathcal{M}WT$
$166.1 \pm 5.7 \pm 5.8(th)$	DØ	Run II	1000	[66]	$\sigma_{t\bar{t}}^{\ell+jets}$
$174.1 \pm 9.1 \pm 5.1(th)$	DØ	Run II	1000	[66]	$\sigma_{t\bar{t}}^{\ell\ell}$
$172.1 \pm 1.5 \pm 1.9$	DØ	Run I+II	1000	[67]	DØ combined
$170.9 \pm 2.2 \pm 1.4$	CDF	Run II	940	[81]	ℓ +jets/b-tag, ME($W \rightarrow jj$)
$169.8 \pm 1.6 \pm 2.2$	CDF	Run II	955	[82]	ℓ +jets/b-tag, ML
$171.6 \pm 2.1 \pm 1.1$	CDF	Run II	1700	[83]	ℓ +jets/b-tag, TM($W \rightarrow jj$)
$170.4 \pm 3.1 \pm 3.0$	CDF	Run II	1800	[84]	$\ell\ell$, ME
$169.7^{+5.2}_{-4.9} \pm 3.1$	CDF	Run II	1200	[85]	$\ell\ell, p_z(t\bar{t})$
$170.7^{+4.2}_{-3.9} \pm 2.6 \pm 2.4(th)$	CDF	Run II	1200	[85]	$\ell\ell, p_z(t\bar{t}) + \sigma(t\bar{t})$
$172.0^{+5.0}_{-4.9} \pm 3.6$	CDF	$\operatorname{Run}\operatorname{II}$	1800	[86]	$\ell\ell, \eta(u)$
$156 \pm 20 \pm 4.6$	CDF	Run II	1800	[65]	$\ell\ell, P_T(\ell)$
$174.0 \pm 2.2 \pm 4.8$	CDF	Run II	1020	[87]	all jets, TM
$171.1 \pm 3.7 \pm 2.1$	CDF	Run II	943	[88]	all jets, TM+ME($W \rightarrow jj$)
$170.5 \pm 1.3 \pm 1.8$	CDF	Run I+II	110-1000	[89]	CDF Combined
$172.5 \pm 1.5 \pm 2.3$ *	CDF	,DØ (I+II)	110-1000		publ. results, PDG best
$170.9 \pm 1.1 \pm 1.5$ **	CDF	DØ (I+II)	110-1000	[68]	publ. or prelim. results

Top Mass Outlook at Tevatron

Decay Length Technique

Top Mass in L+Jets Channel

ATLAS Eur.Phys.J C39 (2005) 63

A

- Based on 'fast'(`full') simulation
- Jet pairing via angle (b,lepton) \rightarrow ~82%
- In-situ jet energy calibration (W→jj)
- Mass estimator via fit on spectrum
- Alternative: kinematic fit (m_w & m_t=m_{anti-t})
- Reduces systematics due to radiation

CMS Note 2006/066

- Three top quark mass estimators : ۲
 - * Gaussian fit (CMS Note 2006/023) on m^{reco} spectrum
 - * convolution with Gaussian parametrized ideogram → m,^{Paramideo}
 - * convolution with full scanned ideogram $\rightarrow \mathbf{M}^{\text{Fulldeo}}$

Top Mass in $t \rightarrow I \rightarrow I \rightarrow Y$ + J/Y + X Channel

100 fb⁻¹ gives after selection

 1,000 signal events (S/B > 100)

 large mass of J/Ψ\finduces strong correlation with top mass
 easy to identify, clean sample
 BR(overall in tt) ~ 5.3 x 10⁻⁵

no jet related systematics

2 GeV uncertainty after 2 years of LHC running

 conservative estimate; most syst. Uncertainties related to theoretical modeling of events
 ultimately, a 1-1.5 GeV uncertainty feasible

> ATLAS Eur.Phys.J C39 (2005) 63 'fast' simulation

Systematic uncertainties	$\delta M_{\text{FJ/}\psi}^{\text{peak}}$ (GeV/c ²)
Final State Radiation	0.15
PDF	0.1
b-quark fragmentation	0.3
Background	0.1
Statistical error	0.5

Top Mass in Dilepton Channel

full event reconstruction via χ^2 technique set of equations from kinematic constraints

solution is found in 98% of the selected events
 m_t(stat) ~ 300 MeV (10fb⁻¹)

small systematics due to radiation (switching on/off ISR/FSR)

ATLAS Eur.Phys.J C3 CMS Note 2006/077 =	39 (2005) 63 = 'fast' simula = 'full' simulation	ation			
source of uncertainty ATLA	AS $ \Delta m_t $ (GeV)	$\delta m_t \ ({\rm GeV})$			
Statistics and reconstruction method 0.3					
b-jet energy scale	0.6	0.6			
b-quark fragmentation	0.7	0.7			
Initial state radiation	0.4 209	% 0.1			
Final state radiation	2.7	0.6			
Parton distribution function	1.2	1.2			

\leq 1 GeV/c² total precision appears feasible @ 10 fb⁻¹

 \mathbb{A}

A

Top Quark Lifetime

- First direct limit on the lifetime of the top quark
- top quark lifetime in SM 5 10^{-25} s (c τ = 3 10^{-10} µm)
- search for anomalous top production via new, long-lived particle
- lepton $+ \ge 3$ jets with ≥ 1 b-tag in 318 pb-1
 - 97 e+jets candidates
 - 60 µ+jets candidates
- measure impact parameter d0 for lepton tracks
- use max. likelihood fit with templates of arbritrary lifetime (incl. track resolution)

Top Quark Charge

Analysis :

a) associate lepton and b-quark to top quark use a kinematic fit for ttbar hypothesis

b) determine charge of b-jet

p, weighted sum of charged tracks associated to a b-jet

Present $Z \rightarrow II$ and $Z \rightarrow bb$ data not inconsistent with -4/3 e top quark of mass 270 GeV/ c^2

Top Quark Charge at Tevatron

• discriminate b and bbar with jet charge algorithm

$$q_{jet} = \frac{\sum_{i} q_{i} p_{Ti}^{0.6}}{\sum_{i} P_{Ti}^{0.6}}$$
 , **p** > 0.5 GeV & $\Delta R > 0.5$

 calibrate Monte Carlo with data using two jet heavy flavor sample with opposite jet tagged with μ flavor

CDF (1.5 fb⁻¹, I+jets and dilepton) exclusion at 87% CL, at 94%, sensitivity b=99.9%

DØ (365 pb⁻¹, l+jets, double-tag) p-value(exotic model) = 7.8%, sensitivity 91.2%

Top Quark Charge at LHC

- Q_{top} =-4/3 (t4→ W⁻b instead of t → +W⁺b) ?
- <u>Method 1</u>: Measurement of radiative top production and/or decay $* \sigma(pp \Rightarrow tty)$ is proportional to Q_{top}^2 nr. events

* After selection+reconstruction (10 fb⁻¹)

 σ (Q=-4/3) > σ (Q=2/3)

nr. events				
	Q=2/3	Q=-4/3		
pp→tτγ	80	250		
Background	70	70		

- Method 2: Measurement of daughter particle charge
- * Associate b-lepton pair from the same top
- * Compute the charge of b on a statistical basis:

$$q_{\text{bjet}} = \frac{\sum_{i} q_{i} |\vec{j} \cdot \vec{p}_{i}|^{\kappa}}{\sum_{i} |\vec{j} \cdot \vec{p}_{i}|^{\kappa}}, \kappa = 0.6$$

* Separate the 2 Q_{top} hypothesis needs less data than Method 1 (~1 fb⁻¹)

Top Quarks as `Standard Candle'

The top mass peak will be one of the first signals to detect and the cross section one of the first relevant measurement to be performed.

A

First day results with $30pb^{-1}$: $\sigma(m_p) \sim 3$ GeV and $\sigma(m_w) \sim 1$ GeV $\Delta JES = 2-3\%$ in first year $\Delta \epsilon$ (b-tag) = 3-4% with $1fb^{-1}$

18. October 2007: A Brief History of the Top Quark - Arnulf Quadt - Grenoble

Conclusion

Top quark physics at TeVatron a large field

- already now many analyses systematics limited
- SM measurements and many tests fro new physics

Top quark physics at LHC
high precision SM measurements
high sensitivity for new physics
much wider range of topics
Top in `year 1': Commissioning detector and physics
Top in `year 2': Standard Model Processes and Phenomena
Top in `year 3': Exploit Sensitivity to New Physics

Backup Slides

Further Studies on Top Quark Pair Production

- ttj and ttjj Xsec measurements are very important ...
 · as QCD tests
- determine mass from $\sigma_{\rm m}/\sigma_{\rm m}$...?
- study/understand tt(H \rightarrow bb) background from data
- spin correlations ...

Object & Event Reconstruction (I+jets)

Kinematic fit techniques (Least-Square methods with mass constraints) ... here hard m_w constraint ...

precision equivalent to no fit with <u>5 times more data ...</u>

Object & Event Reconstruction (II & all-jets)

Di-leptonic channel:

Mass window around the Z boson mass rejects basically all Z+jet events

A

Fully hadronic channel:

Neural Network output combining the information of several topological obervables (scaled to effective cross section)

18. October 2007: A Brief History of the Top Quark - Arnulf Quadt – Grenoble

Top Quark Pair Cross Section

Shape analysis (identical á la D0 in Phys.Lett. B626 (2005) 45)

combine the topological/kinematic information of several event observables

not as powerful as at the Tevatron (CMS Note 2006/064 & ATLAS Eur.Phys.J.C39(2005)63)

Simple counting experiment (high S/N) \$\&> precision:
 di-lepton : (e/μ) 0.9 (stat) ± 11 (syst) ± 3 (lumi) %
 (τ) 1.3 (stat) ± 16 (syst) ± 3 (lumi) %
 lepton+jet : (e/μ) 0.4 (stat) ± 9.2 (syst) ± 3 (lumi) %
 fully hadronic : 3 (stat) ± 18 (syst) ± 3 (lumi) %

Top Quark Pair Cross Section

Breakdown of total uncertainty (CMS Note 2006/064)

example in the semi-leptonic muon channel

	$\Delta \hat{\sigma}_{t\bar{t}(\mu)} / \hat{\sigma}_{t\bar{t}(\mu)}$			
	$1 \ {\rm fb}^{-1}$	5 fb^{-1}	$10 { m fb}^{-1}$	
Simulation samples (ϵ_{sim})	0.6%	0.6%	0.6%	
Simulation samples (F_{sim})	0.2%	0.2%	0.2%	
Pile-Up (30% On-Off)	3.2%	3.2%	3.2% -	conservative
Underlying Event	0.8%	0.8%	0.8%	
Jet Energy Scale (light quarks) (2%)	1.6%	1.6%	1.6%	
Jet Energy Scale (heavy quarks) (2%)	1.6%	1.6%	1.6%	
Radiation (Λ_{QCD}, Q_0^2)	2.6%	2.6%	2.6%	
Fragmentation (Lund b, σ_q)	1.0%	1.0%	1.0%	
\rightarrow b-tagging (5%) \rightarrow Tevatron $\sim 2\%$	7.0%	7.0% <	7.0%	-conservative
Parton Density Functions	3.4%	3.4%	3.4%	
Integrated luminosity	10%	5%	3%	
Background level	0.9%	0.9%	0.9%	
Statistical Uncertainty	1.2%	0.6%	0.4%	
Total Systematic Uncertainty	13.6%	10.5%	9.7%	
Total Uncertainty	13.7%	10.5% 🤇	9.7%	~10% @ 10 fb ⁻¹

dominated by uncertainty on b-tagging efficiency which is conservative when assuming 2% (rather than 5%) i total uncertainty ~ 7% (10fb⁻¹)
 2-3 GeV uncertainty on m, is feasible via cross section measurement

Top Quark Pair Cross Section

• Sensifive to top mass : $\Delta\sigma/\sigma \sim 5 \Delta m_t/m_t \diamondsuit$ 5% on σ gives 2 GeV on m_t

ATLAS ATL-PHYS-PUB-2005-024

 \mathbb{A}

Time	Number of events	$\Delta\sigma/\sigma$ (stat)
	at 1033	
1 "week"	2x10 ³	2.5%
1 "month"	7x10 ⁴	0.4%
1 "year"	3x10 ⁵	0.2%

Cross-section sensitive to renormalisation and factorisation scale, and to the choice of PDF (Parton Density Function)

Spin Correlations at LHC

ATLAS Eur.Phys.J. C44 (2005) 13-33 = 'fast' simulation CMS Note submitted = 'full' simulation

🕼 18. October 2007: A Brief History of the Top Quark - Arnulf Quadt – Grenoble

Spin Correlations at LHC

also fit the single differential distribution of the opening angle between two spin analyzers

TLAS definition of C and D (incl.
$$\kappa_i$$
 factors):

$$\frac{1}{N} \frac{dN}{d\cos\Phi} = \frac{1}{2} (1 - D\cos\Phi)$$

$$\frac{1}{2} \frac{d^2N}{d\cos\Phi} = \frac{1}{2} (1 - D\cos\Phi)$$

 $\overline{N} \, \overline{d \cos \theta_1 d \cos \theta_2} = \overline{4}^{(1)}$

$$-C\cos\theta_1\cos\theta_2)$$

esults		Standard Model result	Sensitivity	Precision
ATLAS 10fb-1)	C_{l-lej}	$0.181 \pm 0.010 \; ({ m stat}) \pm 0.040 \; ({ m syst})$	4.4σ	23%
	C_{l-W}	$0.168 \pm 0.010 \text{ (stat)} \pm 0.034 \text{ (syst)}$	4.7σ	21%
	D_{l-lej}	$-0.142 \pm 0.006 \text{ (stat)} \pm 0.018 \text{ (syst)}$	$7.5~\sigma$	13%
	D_{l-W}	$-0.127 \pm 0.006 \text{ (stat)} \pm 0.024 \text{ (syst)}$	5.1 σ	19%

Main systematic uncertainties: parton generation (PDFs and Q² scale), FSR, b-jet energy scale and top quark mass uncertainty

Both CMS and ATLAS have sensitivity for observing spin correlations after 10 fb⁻¹

First Direct Measurement of V

• previously only indirect lim its: $|V_{tb}| = 0.999127 \pm 0.00026$ (10 C L) CKM Fitter Group for Beauty 2006

• assume: $|V_{td}|^2 + |V_{ts}|^2 \ll |V_{tb}|^2$

• assume: pure V-A and CP-conserving Wtb interaction

• no assumption on quark families or CKM matrix unitarity

$$0.68 < V_{\pm} \le 1 (95\% CL)$$

Further Single-Top Interpretations at LHC

18. October 2007: A Brief History of the Top Quark - Arnulf Quadt – Grenoble