

Top Mass Measurements, JES, and Systematic at CDF

Un-ki Yang The University of Manchester

Workshop on Top Physics, LPSC, Oct 18-20, 2007

Outline

> Why Precise Mt?

Challenges?

CDF Program (Template in Lepton+Jet)

Jet Energy Scale and Uncertainty

- generic jet, light quark jet, and b-jet -

ISR/FSR and NLO

Why Precise Top Mass?

Constrain new physics (SUSY) with M_{Higgs}

Is it a SM top?

Top Production and Decay

> At the Tevatron, mainly primarily produced in pairs via strong interaction (σ ~7pb: 1 for every 10¹⁰ collisions)

> Top decays as free quark due to large mass ($\tau_{top} \sim 4 \times 10^{-25} \text{ s}$)

l, q

ν**, q**

Dilepton (5%, small bkgds)

- 2 leptons(e/ μ), 2 b jets, missing E_T (2vs)
- Lepton+Jet (30%, manageable bkgds)
 - 1 lepton(e/ μ), 4 jets (2 b jets), missing E_T (1 ν)
- All-hadronic (44%, large bkgds)

6 jets (2 b jets)

Un-ki Yang, Manchester

Great Performance

Un-ki Yang, Manchester

Precision Measurements and Impact

with different methods!!! New best single: 1.25% $M_{H} < 144 \text{ GeV/c}^{2} @95\% C.L$

M_{top} Measurement : Challenge 1

Not a simple calculation of the invariant mass of W(jj) and b

M_{top} Measurement : Challenge 1

➢ Not a simple calculation of the invariant mass of W(jj) and b!!!

- Measured jet energy
 - ≠ quark energy from top decay
 - Quarks: showering, hadronization, jet clustering
 - Extra radiated jets

Require excellent jet energy correction and good modeling of extra gluon radiations (40%)

Challenge 2

Too many combination to reconstruct two top quarks

B-tagging helps!: reduces wrong comb. and improves resolution

Top Mass Measurements

Template

- Reconstruct a per-event observable, M_t(reco), Lxy etc: sensitive to M_t
- Create "templates" using fully simulated events for different top mass values, and bkgds
- Maximum Likelihood fit using signal+backgrounds templates

Matrix Element

- Calculate probability dist. as M_t for all combinations in each event by Matrix Element calculation

 maximize dynamic information
- Build Likelihood directly from the probabilities
- Calibrate measured mass and it's error using fully simulated events

Strategy

- Precision & consistency
 - Different channels
 - Different methods (using different information)
- New Physics (bias)

	Method	Njets		B-tag		JES			Rec.
		Exact	+extra	Yes	No	Wjj+std	Wjj	No	variables
	TMP	4	>4						<mark>mt, m_{jj}, Lxy</mark> ,Ρt(e/μ)
LJ	ME	4							P(Mt,JES)
	TMP	2	>2						mt, Pt(e/μ)
	ME	2							P(Mt)
All-J	TMP+ME	6	>6						mt, m _{jj}

Completed(~15 analyses groups)

Template Method in Lepton+Jets

> Event selection

- High-pt central leptons (e,µ): Pt>20 GeV
- 4 jets: Et>20 GeV, |η|<2.0
- Large missing Et > 20 GeV

> χ^2 kinematic fitter: fully reco. ttbar system

$$\chi^{2} = \sum_{i=l,4 \text{ jets}} \frac{(\hat{p}_{T}^{i} - p_{T}^{i})^{2}}{\sigma_{i}^{2}} + \sum_{j=x,y} \frac{(\hat{p}_{T}^{UE} - p_{T}^{UE})^{2}}{\sigma_{j}^{2}} + \frac{(m_{jj} - m_{W})^{2}}{\Gamma_{W}^{2}} + \frac{(m_{lv} - m_{W})^{2}}{\Gamma_{W}^{2}} + \frac{(m_{bjj} - m_{V})^{2}}{\Gamma_{L}^{2}} + \frac{(m_{blv} - m_{V})^{2}}{\Gamma_{L}^{2}}$$

□ Find m_t that fits event best over all combinations (m_W=80.4 GeV, m_t = m_{t̄})
 □ Reject badly reconstructed event

Signal Templates (m_t, JES)

Check Check Check Before the Fit

- □ Pseudo-experiments
 - Bias in central value
 - Bias in error estimation
 - Test using blind Mt and JES MC sample
- □ Challenges
 - Acceptance
 - Shapes (mean, RMS for Mt sensitive variables)

Un-ki Yang, Manchester

Template Results in Lepton+Jets

Un-ki Yang, Manchester

more than a factor of two improvement on JES with 1.7 fb⁻¹

Template using Decay Length (Lxy)

- Uses the average transverse decay length, Lxy of the b-hadrons
- > B hadron decay length \propto b-jet boost \propto M_{top} (>=3jets)

$$M_{top} = 183.9_{-13.9}^{+15.7} \text{ (stat)} \pm 0.3 \text{ (JES)} \pm 5.6 \text{ (syst)} \text{ GeV/}c^2$$

Statistics limited, but it can make big contributions at LHC

Comparisons in Lepton+Jets (1.7fb⁻¹)

Measurement	Template	ME	Lxy (0.7fb ⁻¹)
JES	(1.5)	(1.2)	0.3
Residual	0.7	0.5	
B-jet JES	0.6	0.4	
ISR/FSR	0.4 0.5	0.5	1.3
Bkgd shapes/ normalization	0.3 0.5	0.6	3.3
Generators	0.3	0.4	0.7
PDFs	0.2 0.3	0.3	Data/MC
Methods	0.1 0.3	0.1	<lxy> SF 4.2</lxy>
Total	1.1 1.3	1.2	5.6

Red: 0.7fb⁻¹ including no b-tag Paramterization <- KDE

Combining M_{top} Results

Are all channels consistent ?

Jet Energy Scale at CDF

- \succ Top: cone algorithm (0.4), QCD: Midpoint and Kt algorithms
- \succ Standard calibration (~3%)
 - Use dijet samples & tuned MC
 - Systematic: difference between MC and data, uncertainty from the method
- ➢ Wij in-situ calibration (~1.3%@1.7fb⁻¹)
 - Light quark JES: consistent with Std calibration
 - Apply to b-JES
 - Rely on MC about JES & b-JES difference
- Z(bbbar) (~2% @0.6fb⁻¹)
 - Special SVT trigger sample
 - Consistent with Std calibration
 - Had not applied to top mass yet. Un-ki Yang, Manchester

Scintillating tile non-compensating calorimeter with lead/iron absorbers

Electrons: $\sigma_{\rm E}$ / E = 13.5% / $\sqrt{\rm E}$ (central) $\sigma_{\rm E}$ / E = 16% / \sqrt{E} (plug) $\sigma_{\rm E}$ / E ~ 80% / $\sqrt{\rm E}$ Jets:

Jet Energy Correction

Jet Corrections

21

JES Uncertainty

Systematic Checks

≽γ-Jet:

- highest statistics ©
- systematically limited (ktkick, BG contributions: π⁰)
- Not available for E_T<25 GeV (trigger) ⊗

•Z-Jet:

- Usable at lower E_T values than γ-Jet ^(C)
- lower statistics than γ-Jet at high E_T ⁽²⁾

In-Situ Wjj JES Calibration

In-situ calibration: W->jj resonance

➢ But 70% of δJES in top mass comes from b-jet. How can you apply JES to b-jet?

JES	ΔM_{top}	B-JES	ΔM_{top}
Relative	0.6	B frag.	0.4
Absolute	2.2	Color flow	0.3
000	2.1	Br(b->/vX)	0.4
Total	3.1	Total	0.6

Ans) b-jet specific uncertainty is small

JES uncertainty: mostly statistical, scaled with lum

B-JES

Additional correction to correct

b-jet back to b-quark level

> 2-D simultaneous fit to Mt and JES JES = $-0.07 \pm 0.42\sigma$

Un-ki Yang, Manchester

b-JES using Z(bb)

- Di b-jets with Et>22 GeV, ΔΦ>3.0,E_t^(3rd)<15 GeV using SVT impact parameter trigger at L2</p>
- To measure data/MC b-JES

Un-ki Yang, Manchester

ISR/FSR in tt system?

- > ISR is governed by DGLAP eq.: Q^2 , Λ_{QCD} , splitting functions, PDFs
- Use DY data for ISR (no FSR): study Pt of the dilepton as M²(II)

Un-ki Yang, Manchester

ISR/FSR S	Syst.
-----------	-------

Pythia 6.2	ISR more	ISR less
PARP(61)	0.292	0.073
(D=0.146)	(5 flavor)	
PARP(64)	0.25	4.0
(D=1.0)		

Pythia	FSR more	FSR less
PARP(72)	0.292	0.073
PARP(71) (D=4)	8.0	2.0

Physics process independent

Un-ki Yang, Manchester

Pt of tt : ISR syst. vs NLO

Un-ki Yang, Manchester

Njets : ISR syst. vs NLO

Summary and Lessons

- 1.1% precision and no bias due to new physics appeared yet
- Reasons we surpassed Run-IIa goal:
 - In-situ Wjj calibration
 - Dedicated people working coherently
- But *In-situ* calibration will be soon limited by b-jet specific uncertainty
- Small effects at Tevatron (<400 MeV)
 NLO using MC@NLO
 - □ qq vs gg events (2 GeV diff.)
 - □ Spin correlation
 - □ Multiple interactions(pileup)
 - □ Color interference?
 - What Mt have we measured? Joyful debate @ δMt<1GeV/c² Un-ki Yang, Manchester

30

Backup: Methods in dilepton

Unconstrained system;

2 neutrinos, but 1 missing E_T observable

□ Template:

- Assume $\eta(v)$ (or $\phi(v)$, $P_Z(tt)$)
- Sum over all kinematic solutions, and (I,b) pairs, select the most probable value as a reco. M_t

□ Matrix Element:

- Integrated over unknown variables using the LO Matrix Element assuming jet angles, lepton are perfect, and all jets are b's
- Obtain P(Mtop) for signal and backgrounds
- Calibrate off-set in pull and pull width using fully simulated MC

Backup: Results in dilepton

Event selections: 2 leptons (Pt>20), 2jets (Et>15), MET> 25 GeV
 Syst. error is comparable to the stat. error
 Toward 2nd publications with 1fb⁻¹

Backup:Template in all-jets

- Template method with fitted M_{top} as observable
- Choose among all possible comb ination of 6 jets using a kinematic fitter
- Event seletion:
 - $E_T / \sqrt{(\Sigma E_T)} < 3 (GeV)^{1/2}$
 - $\Sigma E_T \ge 280 \text{ GeV}$
 - $n_{b-tag} \ge 1$ (b-tag)
 - $6 \le N_{jet} \le 8$
 - Neural Network selection
 to improve S/B = 1/2 (vs 1/8)
- And data-driven background template

$$M_{top} = 174.0 \pm 2.2 (stat.) \pm 4.5 (JES)$$

 $\pm 1.7 (syst.) GeV / c^{2}$

New $M_{top} = 171.1 \pm 3.7 (stat. + JES)$ $\pm 2.1 (syst.) \, GeV / c^2$