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Brief Genesis

 In methods using templates for events with missing energy (for
iInstance W--ewv), the transverse variables are mainly used in
hadronic collisions. Using the full kinematics would be better

 The matrix element method has been developed to make use of the
full kinematics combined with the dynamics of the process in an
event probability

 This method has been discussed for the first time for the top mass
measurement by K. Kondo in 1990

« The matrix element method has been used for the first time in
hadronic collisions to rederive the top mass with the Run | data at
DO and has improved the statistical uncertainty by 50%
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The Matrix Element Method

* A signal probability per event is computed using the theoretical
description of the tt production and decay (matrix element), for a given
hypothesis m,, and a set of measured quantities X

1
Py Ceom) = [d W (e ) W) oo (@) o (92)d g

y:ql 7q2

— Normalization N: observed cross-section in the detector acceptance

— Leading order matrix element for the tt production and decay into the
partonic state y

— Transfer function (TF): probability to measure a set of quantities x when the
partonic final state is y (take into account the detector resolution and
hadronization for the final partons). For well measured quantities, the TF is a
delta function

— Parton distribution functions
« All final state particles 4-momenta are needed to compute this

probability, while the system is underconstrained: the remaining
unknown variables are integrated over
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The Matrix Element Method (2)

The backgrounds are taken into account in a generalized probability
per event, where the different fractions f are fixed by the selection or
fitted

})evt ('x7 mt) = fsigaig + fbkgl I?)kgl Tt .f;)kgn %kgn

Finally, the measured top mass is obtained minimizing the likelihood
with respect to the top mass m;:

L(mt) = _ln |_| Pevl‘(x9ml‘)

events

All possible jet permutations are added in the event probability
computation (12 for the lepton+jet channel !)

antiproton
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The Matrix Element Method (3)

 In each analysis, several assumptions are made to simplify the
computation:

— the lepton angles are supposed to be perfectly measured (the transfer
functions are delta functions)

— the angles of the jets are supposed to be perfectly measured (the
transfer functions are delta functions)

— light quark masses are O
— depending on the analysis, additional assumptions can be made

 Multidimensional integration is performed by the Monte Carlo
method (VEGAS)

 To better control the integrations and to reduce integration time, a
variable change is done. Usually variables are chosen to have the
narrowest range to save integration time, such as W (from the top
decay) mass for example
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Method Steps

* For each integration point:

— The 4 momenta of the top pair decay products are calculated
using the values of the integration variables and the measured
jet and lepton angles (and the electron energy if no TF is
applied)

— The matrix element is calculated

— The PDF are evaluated, summing over all possible quark flavor

— The probability to observe the measured jet energies and muon
momentum is evaluated using the transfer functions

— The jacobian determinant of the variable change is included in
the computation
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e This method

Ensemble Testing

IS used to calibrate both the mass measurement and the
statistical uncertainty

e N ensembles of n events are formed from the M available MC events
(n should correspond to the selected number of data events)

Each MC event can be used several times in each ensemble and in several
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Mass Measurement Calibration

 For possible biases correction (due to the simplification hypothesis made in the
computation of the probability), we need to calibrate the response with MC

 The calibration is obtained by extracting the top mass from a large number of
ensembles for different input masses, and plotting the fitted mass wrt the input
mass

« A fit gives the offset pO (taken in this example at m, = 170 GeV/c?) and the slope
pl of the calibration

20 -
po 0.9771+ 0.0513 s
1 p1 1.038 £ 0.00493

-170 GeV

—

(%]

fitted I’\ﬂt
op

A correction factor is
then applied to the
measurement
performed in data

0
|+jet analysis

1 fb-?

true Il.*‘ltop -170 GeV
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Statistical Uncertainty Calibration

e For the same reasons, the statistical error extracted from the
likelihood can be biased

e From the MC events, the pull width for each input top mass is
plotted as a function of the input top mass, and fitted.

* In this example, the statistical error is underestimated by 8%
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to
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1.4
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Assets & Drawbacks

e Malin assets of the Matrix Element Method:
— This method In the event

— The major asset of the matrix element method over other mass
measurement methods is the

mainly due to the per-event probability that gives a higher weight
to the better measured events

e But...

— The matrix element method implies due

to the multiple integrations: for example, DO lepton+jets 1 fb-!
analysis uses ~ 400 * 2GHz computers during 1 month !
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The Lepton+Jet Channel Specificities

u

The b-tagging information is used during
the selection

Exactly 4 jets are required antiproton

To reduce the main systematic uncertainty due to the jet energy scale, it is
calibrated in-situ using the W mass from the hadronic branch as a constraint.
A 2D likelihood is then computed with an additional tested parameter, JES: a
multiplicative factor applied to the jet energy

During the probability computation, a weight w! is applied to each jet-parton
assignment j, taking into account for the b-tagging information

P, (x,m,,JES)= > w'P] (x,m,, JES)

permut ;

The top quark mass is obtained by minimizing a 1D likelihood
— CDF: taking the minimum £ value along the JES axis foreachm,  £(x,m,) = n&}g}gL(x, m,,JES)
— DO: projecting the 2D £ on the m, axis £(x,m,) = IL(x, m,,JES)d(JES)
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CDF Measurement in the Lepton+Jets Channel

Additional hypothesis: the hadronic b quark mass is neglected in the leptonic
branch, but not in the hadronic one, lepton momenta are perfectly measured

Chosen set of variables to integrate over:

— 2 squared top masses and 2 squared W masses
— B=log(p,/p,) where p, and p, are the quarks momenta from the hadronic W decay

— p+(tt): 2 dimensional transverse momentum

CDF Run 2 Preliminary 1.7 fb”’

Svstematic source

Svstematic uncertainty (GeV)

— ANL)=-05
_— Z§(|n l_) =-2.0
—A(nL)=-45
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176 178

Total uncertainty: 2.2 GeV/c?
Relative uncertainty: 1.3%

m, (GeV/c’)

Calibration
MC generator

0.09
0.19 = 0.36

Mo, = 172.7 £ 1.3 (stat.) + 1.2 (JES) + 1.2 (syst.) GeV/¢?

19-OCT-07

ISR 0.26 £ 0.37

FSR 0.13 £ 0.38
Residual JES 0.53
h-JES 0.36
Lepton Py 0.11
Permutation weighting 0.03
Multiple interactions 0.05
PDF's 0.25
Background: fraction 0.33
Background: composition 0.39
Background: average shape 0.31

Background: 0.07 £ 0.20
Gluon fraction 0.14
b-tag Ep dependence 0.16
Total 1.16
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Method Calibration
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The mass measurement is biased by The measured statistical uncertainty is
-1.22 GeV/c? scaled by a factor of 1.245
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w DO Measurement in the Lepton+Jets Chanel

« Additional hypothesis: the lepton resolutions are integrated over
 Chosen set of variables to integrate over:

— 2 squared top masses and the squared hadronic W mass

— the momentum of one of the quarks from the hadronic W decay

— longitudinal momentum of the (b+v) system from the leptonic branch

Topological b Tagging

Error Source Analysis Analysis
Calibrated 2D Likelihood e+jet channel statistical error and , _
D0 Runll Preliminary jet energy scale +25 +2.4

physics modeling:

0.9 fb?

signal modeling +0.98 +0.45

background modeling +0.47 +0.15

PDF uncertainty +0.26 —0.40 4+0.26 — 0.40
| b fragmentation +=0.14 +0.54 |

b/c semileptonic decays 4+0.06 — 0.07 +0.05

detector modeling:

JES pr dependence +0.14 +0.23
| b response (h/e) +0.71 +0.57 |
Total uncertainty: 2.7 GeV/c2 trigger +£0.08 +0.08
Relative uncertainty: 1.6% method: _
signal fraction +0.15 +0.53 —0.24
QCD contamination +0.16 +0.21
LA L L L L L L L L I I\"ICC'cllﬂ)l‘i—],tiull j:ODG j:OO?
180 155 160 165 170 175 180 168 b-tagging 1099
P
total systematic error =14 +1.2
total error +2.9 +2.7

Miop(b—tag) = 170.5 £ 1.8(stat) £ 1.6(JES) £ 1.2(syst) GeV

19-OCT-07 Top Workshop - Grenoble 15



e Mass measurement calibration

Fitted M, - 170 (GeV)

0+1+2 Tags

Method Calibration

e+jet channel
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The mass measurement is corrected by

the fitted parameters
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Fitted Top mass pull

« Statistical uncertainty calibration
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The measured statistical uncertainty is
scaled by a factor of 1.18
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The Dilepton Channel Specificities

e This channel has a smaller branching ratio than the lepton+jets one,
but lower backgrounds

« There are only 2 jets in the events, but no hadronic W decay - no
JES fitting possibility

2 neutrinos in the final state — more integrations are required

antiproton
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CDF Measurement in the Dilepton Channel

o Additional hypothesis: the 2 leading jets come from the b-quarks,
and all lepton momenta are perfectly measured
e Chosen set of variables:
— 2 squared top masses and 2 squared W masses
— transverse momentum of the tt pair (2 components)
1 Source Size (GeV/c?)
CDF Run Il Preliminary (1.8 fb™)
o S Jet Energy Scale 2.6
§ el ° Lepton Energy Scale 0.1
z 0'16; e o ] Generator 0.6
8 0'145_ Method 0.7
£ 0'125 Sample composition uncertainty 0.4
b o ] Background statistics 0.7
0'1;_ . ] Background modeling 0.3
0.08 | o ] .
; o FSR modeling 0.3
005¢ o ] ISR modeling 0.3
ol . * PDFs 0.5
002¢ e ..P ] Total 3.0
0leedpent ier 170 175 {80 '13?’1%&"
M, (GeV/c?) Summary of systematic errors

Mop = 170.4 £ 3.1(stat.) £ 3.0(syst.) GeV/c¢?
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Total uncertainty: 4.3 GeV/c?
Relative uncertainty: 2.5%
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Method Calibration

« Mass measurement calibration « Statistical uncertainty calibration
&‘-‘;‘- :III TTTT TTTT TTTT TTTT TTTT TTTT TTTT III: 2"'I"'llllllllllllll.lllllllllllllllllllll.
> : After scaling :
G185 | o : 18 | -
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170 | . 12F i
165 [ : : —H '} — {v {' '}—
Mp=173.5+ 0.3 ] Y 'f {' :
160 [ . 08k i
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155 1 . 06 L k
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155 160 165 170 175 180 185 190 155 160 165 1/0 175 180 185 190
True M (GeV/c?) M, (GeVic)
The mass measurement is corrected by The measured statistical uncertainty is
the fitted parameters scaled by a factor of 1.11
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TeVatron Top Mass Measurements

« Matrix Element Method provides the best individual measurements
CDF Results (*Preliminary)

DA Runll -- preliminary

Summer 2007

L
Run 1 Dilepton 167.4 +10.3+ 4.9
. L= 100 pb - === -
I+jets (matrix element, b-tagged) * HOH 170.5 124 £12 GeV ( po) A
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370 pb™" (Phys. Lett. B) “All-Jets: MicP
_ v I Jots: Mt 1745+ 2.2+ 4.8
I+jets & Il combination (august 2007) HeH 172.1 #15 19 GeV X
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Conclusion

The matrix element method is a powerful method to measure the top
guark mass, but requires to integrate over 7/8 variables (needs a lot

of CPU time)

The systematic uncertainty is reduced in the lepton+jets channel

due to the in-situ jet energy scale calibration
Assuming no improvements, the total uncertainty on the combined

dilepton and lepton+jets channel could be ~1.6 GeV/c? with ~4 fbt
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Backup: Jet Transfer Function

« The jet TF for JES=1 is (E,: measured energy, E,: quark energy)

1 E,—E,) —p)? E, —E,) — p)?
Tf{fjet (E:m Ey: JES = ]_} = exp — (( ‘ yz) pl) _|_ P3 exp . (( ‘ yz) p4)
vV 2m(p2 + paps) 2p3 22

with p, functions of the quark energy

Pi = g + Ey ' b?_'_

« The parameters are determined from MC events in 4 regions in n
and for 3 different quark varieties: (u,d,s,c), b with an associated soft
muon, and all other b

e If JES#1, the jet TF is

H"rjet( J%CS y Ey; l)

Wiet(Eg, Ey: JES) = S
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W,

Backup: Muon Transfer Function

The muon TF is given by:

' ' G HZ (] YN 2
((a/pr)"" , (q/pT)"") = {%g = (i (WPTJ o ) )

a

with g the charge of generated (y) muon or its reconstructed (x)
track

The resolution is obtained from muon tracks in simulated events

o for |n| < no

T = . .
{ oA [e(nl= ) o [g]> m
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Backup: Electron Transfer Function

e Electron TF;

1 , 1 (E,—E,\°

2 o
where
E. = reconstructed electron energy

E, = 1.0002 - E}ye + 0.324

5 — \/([J*[]Q&E,y)g— (S - Ey,)2 + (0.4)2
g _ 0164 0122 ( | P1 | ) o
\/E E, sin {2 arctan [exp(—ne )]}

2.00564  6.98578

p1 = 1.35193 —
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