| FI                         | ERMIC                      | ONS             | matter constituents<br>spin = 1/2, 3/2, 5/2, |                                       |                 |
|----------------------------|----------------------------|-----------------|----------------------------------------------|---------------------------------------|-----------------|
| Leptons spin = 1/2         |                            |                 | Quarks spin = 1/2                            |                                       |                 |
| Flavor                     | Mass<br>GeV/c <sup>2</sup> | Electric charge | Flavor                                       | Approx.<br>Mass<br>GeV/c <sup>2</sup> | Electric charge |
| $\nu_{e neutrino}$         | $<7 \times 10^{-9}$        | 0               | U up                                         | 0.005                                 | 2/3             |
| e electron                 | 0.000511                   | -1              | d down                                       | 0.01                                  | -1/3            |
| U muon<br>meutrino         | < 0.0003                   | 0               | C charm                                      | 1.5                                   | 2/3             |
| $\mu$ muon                 | 0.106                      | -1              | S strange                                    | 0.2                                   | -1/3            |
| $ u_{T_{neutrino}}^{tau} $ | < 0.03                     | 0               | t top<br>(initial er                         | 170<br>ridence)                       | 2/3             |
| au tau                     | 1.7771                     | -1              | b bottom                                     | 4.7                                   | -1/3            |









# BRING UP B-TAGGING AT DØ

Gordon Watts (Seattle/Marseille)



It can be done...

### Top Physics: Almost Lost Without B-Tagging

3



**Tevatron Cross Sections** 

Relative cross sections change at the LHC...

As experts of Top, I'm sure you all know this...

#### **B** Decay Basics

#### 4

B hadrons have a long lifetime (decays via weak force) cτ ~ 450 μm Can decay as far as 3mm away Average of 4.5 tracks in decay

Tracks with large impact parameters (d) Vertex Reconstruction  $(L_{xy})$ 

B hadrons decay to a muon about 15% of the time

Soft Lepton Searches  $\mu$  is the only viable one

- e high fake rate
- τ just hard

Efficiency is low, however...



Can also use Jet Mass, N<sub>trk</sub>, etc.

Soft muons in jets

Using it in an analysis brings up other issues...

#### Monte Carlo

#### Running on MC

Tracking performance the same? Directly tag on MC and scale to data performance? Roll the dice using data-derived probabilities?



#### Calibration

Where do you find a sample of known b-content?? Calibrate as a function of  $\eta$  and jet  $p_{\tau}$ , etc.

- Jet energy scale!
- Does your calibration sample have statistics in right bins for your signal?



Even if MC is good enough, detector conditions change!

# The Food Chain





We discovered this after about a year of work trying to get calibration results to make sense on data...

# Taggability

#### 7

Detector conditions change

Silicon wafers turned off for short periods of time, etc. Monte Carlo never reflects these exactly. But these have a direct impact on b-tagging efficiency.

Taggability separates these two effects.

Require a jet to be tagable

②Apply b-tagging

Removes detector effects, sample, trigger, and selection specific effects

Taggability must be determined for each analysis after trigger selection, and then applied to the Monte Carlo.



 $\label{eq:left_states} \begin{array}{l} \mbox{Jet } E_{_T} > 15 \mbox{ GeV} \\ \mbox{N}_{trk} \geq 2, \mbox{ } p_{_T} {>} 0.5 \mbox{ GeV}, \end{tabular} AR < 0.5 \\ \mbox{1 track } p_{_T} {>} 1 \mbox{GeV}, \mbox{SMT hits} \end{array}$ 

Central jets: 98% tagable

# <sup>8</sup> The Algorithms

DØ started with three...

#### **CSIP** Algorithm



### Signed Impact Parameter

Negative impact parameter definition.



Track 1 could originate inside the jet core, IP1 > 0Track 2 could not, IP2 < 0

Negative impact parameter tracks are due to resolution effects.

- There is no physics that would generate a negative impact parameter.
- Resolution effects should contribute equally to positive and negative impact parameter tracks.



Predict the positive IP tracks due to resolution effects – the rest will be due to long lived particles!

### JLIP Algorithm

#### Jet Lifetime Impact Parameter

- Based on Impact Parameter Significance
- Use IP<0 tracks to construct flat probability distribution in IP.
- Use probability distributions P(Track from PV) Defined for each class of tracks # of SMT Hits, p<sub>T</sub>, etc.



Each jet assigned P(light quark)



### SVT Algorithm

#### Secondary Vertex Tagger

- Reconstruct vertices using displaced tracks.
- Cut on decay length significance.





#### That is what we started with...

13



Gain of more than 20% in efficiency

## General Comments On The Taggers

b-ID group's first efforts on b-tagging:

"What the !?"

Understanding our results meant understanding tracking, vertexing, etc.

We ended up working in other groups instead of on b-tagging!

Primary vertexing is a good example.

Part way into the run we discovered that the PV error was distorted along the direction of the b-jet

Tracks with larger than normal impact parameter were being used in the PV fit



b-tagging was the only one who cared about the PV at this level!

### General Comments On The Taggers

- The physics motivated taggers are best when you start
  - Direct feedback to tracking, PV people.
    - JLIP's resolution curves were excellent cross-checks of detector performance, for example.
  - Too hard to understand what happens in a NN during startup.
- How do you define a jet as a b-jet in MC?
  - To this day we don't totally understand why light quark jets in ttbar have a higher tag rate than Wjj light quark jets.
- When it is time to go to a multi-variate tagger use something more robust than a simple neural network.
  - Especially something resistant to noise!
- Simple tagger (CSIP) perform almost as well as the sophisticated taggers
  - It wasn't until the rest of the detector had really been tuned up!
  - Start simple...
- People have use combination of muon tagger and IP based tagger
  - Split data into orthogonal samples.





What is the b-content of the sample I'm running my tagger on?

#### **Calibration: Efficiency**



### **Calibration: Efficiency**

18

System 8 Method 8 equations, 8 unknowns (a.k.a. System D)

Two uncorrelated taggers on two samples of different b-content.

- Measure single tag and also double tag rate
- 8 unknowns, 8 equations

Tagger #1: Muon tagger. Tagger #2: Tagger under study.

DØ uses this technique to this day to calculate the efficiency

Monte Carlo does enter this calculation

- We have to determine what the tag rate is for a B jet w/out a muon (a ratio).
- Charm is determined by using the charm-to-bottom tagging ratio from MC and the data derived efficiency.

$$\begin{split} n &= n_b + n_l \\ p &= p_b + p_l \\ n^{CSIP} &= n_b \varepsilon_{btag}^{CSIP} + n_l \varepsilon_{non-btag}^{CSIP} \\ p^{CSIP} &= p_b \varepsilon_{btag}^{CSIP} + p_l \varepsilon_{non-btag}^{CSIP} \\ n^{SLT} &= n_b \varepsilon_{btag}^{SLT} + n_l \varepsilon_{non-btag}^{SLT} \\ p^{SLT} &= p_b \varepsilon_{btag}^{SLT} + p_l \varepsilon_{non-btag}^{SLT} \\ n^{both} &= n_b \varepsilon_{btag}^{CSIP} \varepsilon_{btag}^{SLT} + n_l \varepsilon_{non-btag}^{CSIP} \\ p^{both} &= p_b \varepsilon_{btag}^{CSIP} \varepsilon_{btag}^{SLT} + p_l \varepsilon_{non-btag}^{CSIP} \\ p^{both} &= p_b \varepsilon_{btag}^{CSIP} \varepsilon_{btag}^{SLT} + p_l \varepsilon_{non-btag}^{CSIP} \\ e^{SLT} &= p_b \varepsilon_{btag}^{CSIP} \varepsilon_{btag}^{SLT} + p_l \varepsilon_{non-btag}^{CSIP} \\ p^{both} &= p_b \varepsilon_{btag}^{CSIP} \varepsilon_{btag}^{SLT} + p_l \varepsilon_{non-btag}^{CSIP} \\ e^{SLT} &= p_b \varepsilon_{btag}^{CSIP} \\ e^{SLT} &= p_b$$

### **Calibration: Efficiency**

19

Efficiency (and fake rate) is parameterized in  $p_{\scriptscriptstyle T}$  and  $\eta.$ 

- Partition the data sets into bins of  $p_T$  or  $\eta$ .
- Fit to get shape in  $p_{\scriptscriptstyle T}$  or  $\eta.$
- Combine fits to get 2D.

System 8 is statistics hungry.

Dijet sample runs out of statistics at high  $p_T$ 's!

What do you do with jets there?

Be consistent with calibration and application of tagging!

### Calibration: Fake Rate

#### Negative Tag Rate

- Tags behind the PV are due to mis-measured tracks
- Tags in front of PV due to mis-measured tracks will occur at the same rate

Use a large sample of QCD events

#### There are some tricks...

- A b-jet is slightly more likely to have a negative tag than a light quark jet
- Asymmetry caused by tag definition: what do you do if a jet has both a positive and negative tag?
- How do you define a negative tag for a tagger like JLIP?
  - Make sure definition isn't too asymmetric.



Use MC Scale

Factors

### **Comments On Calibration**

#### 21

- Don't measure things twice: we use two different data samples to measure the fake rate
  - Give different fake rates.
  - Take difference as a systematic error.
- Took DØ much more time to calibrate the algorithms than it did to write them and test them on Monte Carlo.
- Triggers
  - At DØ we have soft lepton triggers that gather enough data
- □ Sample sizes: millions of events.
- Food Chain Consequences
  - Often b-tagging is the last thing to be certified!
  - **b**-tagging had to run on both our raw data format and root-tuple format.
  - Non trivial amount of infrastructure code to support this!
- Instantaneous luminosity balance your calibration samples!
  - Or understand and parameterize the trend!
- What Jet Energy Scale should be used?
  - Closure tests didn't work with JES w/muon.

#### Conclusions

#### DØ's tagging experience

- First 4 years of running with three competing algorithms.
- All had similar performance analysis's preference often made the decision.
- Finally combined...
- Calibration is a huge effort shear # of events mean it can take more than a month start-to-end for someone who knows what they are doing.
- We learned a lot along the way
  - Many of our lessons are already in the proto-type LHC taggers.
  - And many of our people are active in LHC which will hopefully make the time between collisions and a well understood tagger short!
- Do a better job at external documentation!

# 23 Backup Slides

(some stolen out-right...)

### Top pair production at LHC



LHC

LHC start up in April 2007 @ L=10<sup>33</sup>