TOP-PHYSICS WITH SHERPA CKKW & HEAVY FLAVOURS

Stefan Höche¹ Institute for Particle Physics and Phenomenology Durham University

¹ for Sherpa: Tanju Gleisberg, SH, Frank Krauss, Steffen Schumann, Marek Schönherr, Frank Siegert & Jan Winter

OUTLINE

This talk is not exhaustive ...

... but focused on the perturbative part of $t\overline{t}$ production

Schematically:

- In the context of Monte Carlo event generation we need
 - Matrix Elements (ME) for production & decay
 - Parton Showers (PS) for production & decay
 - A merging prescription for ME & PS

JHEP 02 (2002) 044

Sherpas built-in standard ME generator AMEGIC++ provides

- Fully automated calculation of (polarized) cross sections in the SM(+AGC), MSSM and ADD model
- Performance comparable to that of dedicated codes
- Expandability (users can easily implement new models)

Extensively tested, e.g.

- e⁺e⁻→6f comparison vs. HELAC/PHEGAS
 deviations in 86 processes EPJC 34(2004)173 →
- Comparison of arbitrary 2→2 MSSM processes vs. WHIZARD/O'Mega & SMadGraph Hagiwara, Kilian, Krauss, Ohl, Plehn, Rainwater, Reuter, Schumann Phys.Rev.D73(2006)055005

JHEP 08 (2006) 062

QCD: Comparison with on-shell methods shows superiority of CDBG/Dyson-Schwinger algorithms for numerics

Computation time $2 \rightarrow n$ gluon ME for 10^4 phase space points, sampled in helicity and colour CO \rightarrow colour ordered CD \rightarrow colour dressed

State CO CD CO CD /CO	CD
2g 0.24 0.28 0.28 0.33 0.3	1 0.26
3g 0.45 0.48 0.42 0.51 0.5	7 0.55
4g 1.20 1.04 0.84 1.32 1.6	3 1.75
5g 3.78 -2.69 2.59 7.26 5.9	5 5.96
6g 14.2 7.19 11.9 59.1 27.8	30.6
$7g$ 58.5 23.7 73.6 646_M 146	195
8g 276 82.1 597 8690 919	1890
9g 1450 270 5900 127000 631 0	29700
10 <i>g</i> 7960 864 64000 - 48900	a the second second

Factorial growth tamed ! Now exponential (~3ⁿ)

Other methods much slower due to unsuitable natural color basis and/or large number of vertices

HIGH-MULTIPLICITY ME'S: COMIX

- Take approach serious and extend to full SM
 - → New ME generator **COMI**X
- Promising results for all processes attempted e.g.
 - $pp \rightarrow Z+N$ jets where so far N up to 6 (all partons !)
 - $pp \rightarrow N \text{ jets} + t [W^+b + M \text{ jets}] \overline{t} [W^-\overline{b} + M \text{ jets}]$ where so far {N,M} up to {2,1}
 - pp → N gluons where N up to 10 (QCD benchmark process)
 other EW / QCD ...
- Key point: Vertex decomposition of all four-particle vertices (Growth in computational complexity for CDBG determined solely by number of external legs at vertices)
- So the ME is ticked off, but how about the phasespace ?
 - Employ recursive methods analogous to ME calculation
 Basic Idea: Nucl. Phys. B9 (1969) 568
 Basic Idea: Nucl. Phys. B9 (1969) 568

Nucl. Phys. B9 (1969) 568

- State-of-the art approach for general phasespace generation: Factorise PS using
 - $\mathrm{d}\Phi_{\mathbf{n}}\left(\mathbf{a},\mathbf{b};\mathbf{1},\ldots,\mathbf{n}\right)=\mathrm{d}\Phi_{\mathbf{m}}\left(\mathbf{a},\mathbf{b};\mathbf{1},\ldots,\mathbf{m},\bar{\pi}\right)\,\mathbf{d}\mathbf{s}_{\pi}\,\mathrm{d}\Phi_{\mathbf{n}-\mathbf{m}}\left(\pi;\mathbf{m}+\mathbf{1},\ldots,\mathbf{n}\right)$
 - Remaining basic building blocks of the phasespace:

Arrows → Momentum flow

COMIX: PHASESPACE RECURSION

 $\hat{S}^{\,\rho,\pi\setminus
ho}_{\pi}$

 π

 $\hat{T}^{\pi,\overline{\alpha b\pi}}_{\alpha}$

Basic idea: Take above recursion literally and "turn it around" S-channel phasespace (schematically)

 $d\Phi_{S}(\pi) = \left[\sum_{\alpha} \alpha \left(S_{\pi}^{\rho,\pi\setminus\rho}\right)\right]^{-1} \times \left[\sum_{\alpha} \alpha \left(S_{\pi}^{\rho,\pi\setminus\rho}\right) S_{\pi}^{\rho,\pi\setminus\rho} P_{\rho} d\Phi_{S}(\rho) P_{\pi\setminus\rho} d\Phi_{S}(\pi\setminus\rho)\right] -$

T-channel phasespace (schematically) Weights for adaptive multichanneling

"b" is fixed → Every PS-weight is unique !
Arrows → Weight flow !
Factorial growth of PS-channels tamed

• QED benchmark processes: ME performance w/o colours

Process	# Graphs	#Currents/ # Vertices	Time [s / 10^4 pts] AMEGIC++	Time [s / 10^4 pts] COMIX
$ au o {f 4} au$	36	25 / 45	7.2	5.1
au o 8 au	158400	336 / 3325	-	2841

Phasespace performance in W/Z+jets @ LHC Cuts: $66 \text{ GeV} \le m_{I\overline{I}} \le 116 \text{ GeV}$, CDF Run II K_T-algo @ 20GeV

Process	Efficiency	Process	Efficiency
Z+0 jet	8.50%	W+0 jet	19.13%
Z+1 jet	1.05%	W+1 jet	1.50%
Z+2 jets	0.60%	W+2 jets	0.48%
Z+3 jets	0.15%	W+3 jets	0.16%

PS'S IN SHERPA: APACIC++

R. Kuhn, F. Krauss, G. Ivanyi, G. Soff CPC 134 (2001) 223 F. Krauss, A. Schälicke, G. Soff, hep-ph/0503087

Basic features of APACIC++ :

- Virtuality ordered parton cascade, colour coherence imposed by angular veto
- Final & initial state showering in e⁺e⁻ & hadron collisions
 (no DIS-like situations)
- Algorithm similar to virtuality ordered PYTHIA parton shower
- Extensively tested, e.g. vs. LEP data (hadronisation: PYTHIA)

• In quasi-collinear limit (b \leftrightarrow heavy quark) ME factorises $|\mathbf{M}(\mathbf{b}, \mathbf{c}, \dots, \mathbf{n})|^2 \rightarrow |\mathbf{M}(\mathbf{a}, \dots, \mathbf{n})|^2 \frac{8\pi\alpha_s}{\mathbf{t} - \mathbf{m}_a^2} \mathbf{P}_{\mathbf{a} \rightarrow \mathbf{b} \mathbf{c}}(\mathbf{z})$

• Virtuality ordered PS \rightarrow evolution variable t changes to $t - m_a^2$

 Splitting functions P_{ab}(z) become those for massive quarks Nucl. Phys. B627(2002)189

$$\longrightarrow \mathbf{C}_{\mathbf{F}} \left(\frac{1+\mathbf{z}^2}{1-\mathbf{z}} - \frac{2\mathbf{z}(1-\mathbf{z})\mathbf{m}^2}{\mathbf{q}^2 + (1-\mathbf{z})^2\mathbf{m}^2} \right)$$

$$\rightarrow T_R \left(1 - 2z(1-z) + \frac{2z(1-z)m^2}{q^2 + m^2} \right)$$

Cross-check: 2- and 3-jet fraction in $e^+e^- \rightarrow t\bar{t}$, PS vs. ME, weighted with NLL Sudakov form factors Phys. Lett. B576(2003)135

APACIC++: HEAVY QUARK PRODUCTION

PS in production

- On-shell daughter partons
 New decay kinematics via Lorentz transformation Choice: Boost into new (daughter) cms
- FSR-like situation
- Evolution stops once diced virtuality reaches on-shell mass of heavy quark

PS in decay

- Off-shell daughter partons
 Decay kinematics need to be reconstructed
 - Choice: Reconstruct in cms of decayed quark, such that p/|p| is preserved
- ISR-like situation
- Evolution stops if p_⊥ reaches width of decaying quark

Matrix Elements

- Exact to fixed order in running coupling
- Include all quantum interferences
- Calculable only for low
 FS multiplicity (n≤6-8)

Parton Showers

$$d\sigma_{n+1} = d\sigma_n \otimes \sum_{\mathbf{a} \in \mathbf{q}, \mathbf{g}} \frac{d\mathbf{t}}{\mathbf{t}} d\mathbf{z} \frac{\alpha_{\mathbf{s}}(\mathbf{t}, \mathbf{z})}{2\pi} \mathbf{P}_{\mathbf{a} \to \mathbf{bc}}(\mathbf{z})$$

- Resum all (next-to) leading logarithms to all orders
- Interference effects only through angular ordering
- Basic idea of CKKW: Combine both approaches to have
 - Good description of hard/wide angle radiation (ME)
 - Correct intrajet evolution (PS)

JHEP 08(2002)015; JHEP 11(2001)063

Narrow width approximation
 → full ME factorises
 into production and decay parts

Schematically: $\mathcal{A}^{(n)} = \mathcal{A}_{\text{prod}}^{(n_{\text{prod}})} \otimes \prod_{i \in \text{decays}} \mathcal{A}_{\text{dec},i}^{(n_i)}$

*i∈*decays

Generator setup:

- AMEGIC++ provides decay chain treatment to project onto relevant Feynman diagrams
 Intermediate particle masses distributed according to Breit-Wigner
 APACIC++ provides production & decay shower off heavy partons
- CKKW is applied separately and completely independent within production and each decay
 - $\begin{array}{c} \bullet \quad \label{eq:started} Yields all combinations of parton multiplicities in ME up to \\ \mathbf{N_{max,prod}} \otimes \quad \prod \quad \mathbf{N_{max,dec \ i}}, \ i.e. \ 1-0-0, \ 0-1-0, \ ... \ in \ e^+e^- \to t\overline{t} \end{array}$

Stefan Höche, Top-Workshop Grenoble, 19.10.2007

The CKKW-implementation in Sherpa has been extended for decay chains, enabling e.g. more elaborate tt simulations
 A new ME-generator is well under way, pushing limits in high-multiplicity tree-level ME-calculations

We currently also work on

- BSM physics (new models in AMEGIC++)
- QED radiation generator (YFS-based)
- Hadron decays (B-mixing done !)

Updates on Sherpa can be found on

WWW.SHERPA-MC.DE

E-mail us on

INFO@SHERPA-MC.DE

This yields the correct jet rates ! Simple example: 2-jet rate in ee \rightarrow qq $R_2(q) = \left(\Delta(Q_{\text{cut}}, \mu_{\text{hard}}) \frac{\Delta(q, \mu_{\text{hard}})}{\Delta(Q_{\text{cut}}, \mu_{\text{hard}})}\right)^2$