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CKKW & Heavy flavours



Outline

Matrix Elements (ME)
for production & decay
Parton Showers (PS)
for production & decay
A merging prescription for ME & PS

Stefan Höche, Top-Workshop Grenoble, 19.10.2007

This talk is not exhaustive ...

Narrow width approximation       process factorises
into production and decay parts

... but focused on the perturbative part of      productiontt̄

Schematically:

In the context of Monte Carlo 
event generation we need
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Sherpas built-in standard ME generator AMEGIC++ provides
Fully automated calculation of (polarized) cross sections
in the SM(+AGC), MSSM and ADD model
Performance comparable to that of dedicated codes
Expandability (users can easily implement new models)

Extensively tested, e.g. 

Comparison of arbitrary 2   2 MSSM
processes  vs. WHIZARD/O’Mega &
SMadGraph  Hagiwara, Kilian, Krauss, Ohl, 
Plehn, Rainwater, Reuter, Schumann 
Phys.Rev.D73(2006)055005

+ -e e     6f comparison vs. HELAC/PHEGAS 
deviations in 86 processes EPJC 34(2004)173

ME’s in Sherpa: AMEGIC++

T. Gleisberg et al.: Cross sections for multi-particle final states at a linear collider 7

Triple Higgs coupling

Final state QCD AMEGIC++ [fb] HELAC [fb]

µ−µ+bb̄bb̄ yes 2.560(26)e-02 2.583(26)e-02
yes 3.096(60)e-02 3.019(43)e-02
no 1.711(55)e-02 1.666(28)e-02
no 2.34(12)e-02 2.36(10)e-02

Table 6. Cross sections for the process e+ e− → µ−µ+bb̄bb̄.
All results in fb for

√
s = 360 GeV (first row) and

√
s = 500

GeV (second row).

Backgrounds to triple Higgs coupling

Final state QCD AMEGIC++ [fb] HELAC [fb]

µ−µ+bb̄bb̄ yes 7.002(32)e-03 7.044(22)e-03
yes 6.308(24)e-03 6.364(21)e-03
no 2.955(11)e-03 2.972(12)e-03
no 3.704(15)e-03 3.695(13)e-03

Table 7. Cross sections for e+ e− → µ−µ+bb̄bb̄ with all contri-
butions due to intermediate Higgs bosons left out. All results
in fb taken for

√
s = 360 GeV (first row) and

√
s = 500 GeV

(second row).

are given in Tables 6 and 7, respectively. From the results
displayed one can read off that the inclusion of intermedi-
ate Higgs bosons enhances the cross sections by a factor
of three to four. Again, also the effect of QCD has been
checked. For the process involving the intermediate Higgs
bosons, QCD leads to total cross sections that are larger
by roughly 30%-40%, without the Higgs bosons, QCD con-
tributes on the level of factors of two to three.

5 Summary of results

In the framework of this comparison, total cross sections
for 86 different processes involving six-particle final states
have been obtained by the two multi-purpose matrix el-
ement generator packages HELAC/PHEGAS and AMEGIC++.
The integration over the multidimensional phase space
of the final states has been performed with Monte Carlo
methods, and in all cases one million MC points have been
used. For nearly all cross sections the resulting statistical
error was significantly smaller than one per cent, roughly
five per mille. There have been no significant differences
between the two codes. To compare the results, for each
process i the deviation s(i) of the two resulting cross sec-

tions σ(i)
H and σ(i)

A has been calculated through

s(i) =
σ(i)

A − σ(i)
H

√

(

∆σ(i)
A

)2
+

(

∆σ(i)
H

)2
. (15)

The distribution of the individual differences is depicted in
Fig. 3. The average deviation is s̄ = −0.065, the variance
in their distribution is σs ≈ 1. The maximal difference
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HELAC/PHEGAS vs. AMEGIC++ 
differences in results 

Fig. 3. The distribution of deviations s(i), given by Eq.15, for
the eighty-six total cross sections i presented in this paper. The
average value is s̄ = −0.065, their variance is σs ≈ 1 .

between two cross sections is smaller than three standard
deviations, s(max.) ≈ 2.6. The distribution of differences
follows roughly a Gaussian distribution.

To summarize: Both packages, HELAC/PHEGAS as well
as AMEGIC++, lead, with quite different methods, to con-
sistent results for total cross sections for a large number
of different processes with six particles in the final state.
This provides an independent check of the precision level
of the two codes, which can be considered as successfully
tested.

Acknowledgment: The authors thank the Center for High Per-
formance Computing Dresden (ZHR) for providing their re-
sources and BMBF for financial support. The work of FK was
supported by the EC 5th Framework Programme under con-
tract number HPMF-CT-2002-01663. CGP also acknowledges
support from the EC project ”Multi-particle Processes and
Higher Order Corrections”, HPMF-CT-2002-01622. SS wants
to thank GSI Darmstadt for financial support.
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Figure 2: Diagrammatic representation of the decomposition (3.10) of the color factor of the
three-gluon vertex part.

- δJ̄
GδH̄

I is the color structure of the propagator appearing in the Berends-Giele recursive

relations.

- δL̄
iσ1

. . . δ
̄σk
K is the color structure of the subcurrent Jν(σ1, . . . ,σk), where the off-shell

leg ν has color (K, L̄).

- δN̄
iσk+1

. . . δ
̄σn
M is the color structure of the subcurrent Jρ(σk+1, . . . ,σn), where the

off-shell leg ρ has color (M, N̄ ).

- δḠ
L δK̄

N δM̄
H is part of the color structure of a three-gluon vertex to which the off-shell

legs µ, ν, ρ with colors (G, H̄), (K, L̄), (M, N̄) are attached.

We now define an ordered partition of a set E into two independent parts as a pair

(π1,π2) of subsets of E such that π1 ⊕ π2 = E, which means (π1,π2) "= (π2,π1). Further-

more, we call (unordered) partition of a set E into two independent parts a set {π1,π2}

of subsets of E such that π1 ⊕ π2 = E and {π1,π2} = {π2,π1} . These definitions can be

easily extended to partitions of a set E into n > 2 independent parts, for both the ordered

and the unordered case.

In the case encountered here E = {1, 2, . . . , n}. We will denote the set of all ordered

partitions of E into two independent parts by OP (n, 2) and the set of all (unordered)

partitions of E into two independent parts by P (n, 2). Using these definitions, the sum

over permutations appearing in Eq. (3.8) can be decomposed as follows: For a given value

of k,

- Choose an ordered partition π = (π1,π2) in OP (n, 2) such that #π1 = k, where #π1

is the number of elements in the set π1.

- Fix the first k elements of the permutation to be in the subset π1.

– 6 –

QCD: Comparison with on-shell methods shows 
superiority of CDBG/Dyson-Schwinger algorithms for numerics

JHEP 08 (2006) 062

Apart from these, the new CSW-like recursive relations retain the same form as the cor-

responding color-ordered relations with the difference that in the color-ordered case the

sum goes over unordered objects. Furthermore, as in the color-ordered case, the number

of different vertices is fixed and only three-point vertices appear in the recursive relations.

Therefore we may compare them to the color-dressed Berends-Giele recursive relation pre-

sented in Section 3.

6. Numerical results

All relations for calculating multi-gluon amplitudes presented in the previous sections have

been implemented into C++ Monte Carlo programs using the tools set ATOOLS-2.0 and

the integration package PHASIC++-1.0 [3]. A comparison of calculation times for helicity

summed color-ordered amplitudes versus the results obtained in Ref. [29] has been per-

formed. Our implementations yield exactly the same growth in computation time, except

for the CSW rules, where we gain considerably due to rewriting the CSW vertex rules in

terms of recursive relations for internal lines. Furthermore we have checked, employing the

color-flow basis, that the color-dressed relations yield the same results as the calculations

employing color-ordered amplitudes along with the color-flow decomposition presented in

Ref. [24]. Using the adjoint representation, we have checked that the color-dressed BCF

relations yield the same result as the color-ordered ones along with a decomposition of the

total amplitude in the adjoint basis.

A comparison of the computation times for the various approaches using the color-

flow basis can be found in Table 3. The color-dressed Berends-Giele relations are the

fastest method for more than five final state gluons. For less than six final state gluons the

color-flow decomposition using color-ordered amplitudes calculated according to the BCF

recursion performs better. In this case only few valid color flows exist [24] and primarily

Final BG BCF CSW

State CO CD CO CD CO CD

2g 0.24 0.28 0.28 0.33 0.31 0.26

3g 0.45 0.48 0.42 0.51 0.57 0.55

4g 1.20 1.04 0.84 1.32 1.63 1.75

5g 3.78 2.69 2.59 7.26 5.95 5.96

6g 14.2 7.19 11.9 59.1 27.8 30.6

7g 58.5 23.7 73.6 646 146 195

8g 276 82.1 597 8690 919 1890

9g 1450 270 5900 127000 6310 29700

10g 7960 864 64000 - 48900 -

Table 3: Computation time (s) of the 2 → n gluon amplitudes for 104 phase space points, sam-
pled over helicity and color. Results are given for the color-ordered (CO) and the color-dressed
(CD) Berends-Giele (BG), Britto-Cachazo-Feng (BCF) and Cachazo-Svrček-Witten (CSW) rela-
tions. Numbers were generated on a 2.66 GHz XeonTM CPU.

– 18 –

Computation time
2   n gluon ME for 
10  phase space 
points, sampled in
helicity and colour

4

CO    colour ordered
CD    colour dressed

Factorial growth tamed !
Now exponential (~3  )n Other methods much slower due 

to unsuitable natural color basis 
and/or large number of vertices

Stefan Höche, Top-Workshop Grenoble, 19.10.2007

High-Multiplicity ME’s: COMIX



Take approach serious and extend to full SM
New ME generator COMIX

Promising results for all processes attempted e.g.
pp     Z+N jets where so far N up to 6 (all partons !)
pp     
          where so far {N,M} up to {2,1}
pp     N gluons where N up to 10 (QCD benchmark process)
other EW / QCD ...

Key point: Vertex decomposition of all four-particle vertices
( Growth in computational complexity for CDBG
   determined solely by number of external legs at vertices )
So the ME is ticked off, but how about the phasespace ?

Employ recursive methods analogous to ME calculation
Basic Idea: Nucl. Phys. B9 (1969) 568

N jets + t
[

W+b + M jets
]

t̄
[

W−b̄ + M jets
]

Stefan Höche, Top-Workshop Grenoble, 19.10.2007

High-Multiplicity ME’s: COMIX
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Fig. 2 Basic decay vertices for phase space generation. Grey blobs correspond to eventually off mass-shell particles.

Dark blobs denote known momenta, light blobs unknown momenta. Arrows indicate the momentum flow.

dΦT (α) =





∑

(π1,π2)∈OP(α\b)

∑

T∈T (α;π1,π2)

α (T π1,π2
α ) +

∑

(π,β)∈OP(α)

∑

S∈S(α,β;π)

α
(

Sπ
α,β

)





−1

×





∑

(π1,π2)∈OP(α\b)

∑

T∈T (α;π1,π2)

α (T π1,π2
α ) T π1,π2

α dΦT (απ1) dΦS (π1) Pπ2

+
∑

(π,β)∈OP(α)

∑

S∈S(α,β;π)

α
(

Sπ
α,β

)

Sπ
α,β dΦS (π) dΦT (β \ b)



 ,

(40)

In this context we define the one- and no-particle phase space

dΦi = 1 ,

dΦ∅ = 0 .
(41)

The function α corresponds to a vertex-specific weight which may be adapted to optimise the integration
procedure, see Ref. [10]. The second sums run over all possible S- and T -type vertices which have a corre-
spondence in the matrix element. The full differential phase space element is given by

dΦn (a, b; 1, . . . , n) = dΦT (a) . (42)

Note that Eqs. (39) and (40) in the form stated above are not suited to generate the sequence of final state
momenta. To do so one rather has to employ the following algorithm, which corresponds to a reversion of
the recursion and respects the weight factors α introduced above.

• From the set of possible vertices connecting currents in the matrix element, choose a sequence con-
necting all external particles in the following way:

1. Start with the set of indices π = {a, b, 1, . . . , n − 1}, corresponding to the unique external current
of index n.

2. From the set of possible phase space vertices connecting to π select one according to an on-
the-flight constructed multi-channel employing the weights α.4 If π is a single index, stop the
recursion.

3. According to the selected vertex, split π into the subsets π1 and π2. Repeat step 2 for these
subsets.

• Fore each vertex, make use of the fact that π = π to adjust the indices in an appropriate way for
momentum generation. That is if any π contains b and other indices, replace π by π.

• Order T̄ -type vertices ascending and S̄-type vertices descending in the number of external indices
connected to initial states.

4 Note that in this context α-weights have to be normalised to unity on-the-flight.
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COMIX: Phasespace Recursion

State-of-the art approach for general phasespace generation:
Factorise PS using 

“Propagators“

dΦn (a,b;1, . . . ,n) = dΦm (a,b;1, . . . ,m, π̄) dsπ dΦn−m (π;m + 1, . . . ,n)

Decay “vertices”

Nucl. Phys. B9 (1969) 568

Arrows       Momentum flow

Pπ =

{

1 if π or π external

dsπ else

Remaining basic building blocks of the phasespace:

S
π,π\ρ

π =
λ(sπ, sρ, sπ\ρ)

8 sπ

d cos θρ dφρ

T
π,αbπ

α
=

λ(sαb, sπ, s
αbπ

)

8 sαb

d cos θπ dφπ

Stefan Höche, Top-Workshop Grenoble, 19.10.2007



dΦ
(b)
T (α) =

[

∑

α

(

T
π,αbπ
α

) ]

−1

×

[

∑

α

(

T
π,αbπ
α

)

T
π,αbπ
α Pπ dΦS (π) P αbπ dΦ(b)

T (απ)
]

COMIX: Phasespace Recursion

Basic idea: Take above recursion literally and “turn it around”

βα

αβ

Ŝ αβ
α,β

π αbπ

bα

T̂ π,αbπ
α

ρ π \ ρ

π

Ŝ ρ,π\ρ
π

Fig. 1 Basic decay vertices for weight calculation. Dark blobs denote potentially nontrivial known weights, light

blobs weights to be determined. Arrows indicate the weight flow.

where π = {a, b, 1, . . . , m} indicates a newly introduced timelike intermediate momentum and π̄ = {a, b, 1, . . . , n}\
π. Equation (36) allows to decompose the complete phase space into building blocks corresponding to t- and
s-channel decay and s-channel production processes. We will refer to them as phase space vertices, while
the integral introduced in Eq. (36) will be called a phase space propagator. In the algorithm presented here,
only timelike propagators are employed.

The three vertex types for weight calculation and phase space generation are depicted in Figs. 1 and 2,
respectively. The s-channel production vertex S αβ

α,β has no degrees of freedom and represents overall four
momentum conservation. Thus the basic building blocks of the phase space integration are summarised as
follows

Pπ =

{

1 if π external or π = {a, b}
dsπ else

,

S αβ
α,β = (2π)4 δ(4) (pα + pβ − pαβ) ,

S ρ,π\ρ
π =

λ
(

sπ, sρ, sπ\ρ

)

(2π)6 8 sπ

d cos θρ dφρ ,

T π,αbπ
α =

λ
(

sαb, sπ, s αbπ

)

(2π)6 8sαb

d cos θπ dφπ

(37)

Here we have introduced the triangular function

λ (sa, sb, sc) =
√

(sa − sb − sc)
2 − 4sbsc (38)

Greek indices always denote a subset of all possible indices. Note that even since α might correspond to an
off-shell internal particle, b always indicates a fixed external incoming particle. This is essential in all further
considerations and allows reusing weight factors in the Monte Carlo integration, just as currents are reused

in the matrix element computation. The functions corresponding to S ρ,π\ρ
π and T π,αbπ

α are in fact identical,
since they represent a solid angle integration. In practice however we choose different samplings according
to Ref. [12]. Recursive relations for phase space integration in terms of the above quantities can then be
defined as

dΦS (π) = Pπ





∑

(π1,π2)∈OP(π)

∑

S∈S(π;π1,π2)

α (Sπ1,π2
π )





−1

×





∑

(π1,π2)∈OP(π)

∑

S∈S(π;π1,π2)

α (Sπ1,π2
π ) Sπ1,π2

π dΦS (π1) dΦS (π2)



 ,

(39)
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S-channel phasespace (schematically)

T-channel phasespace (schematically)

Arrows       Weight flow !
“b” is fixed      Every PS-weight is unique !

Weights for adaptive 
multichanneling

dΦS (π) =
[

∑

α
(

Sρ,π\ρ
π

) ]−1

×
[

∑

α
(

Sρ,π\ρ
π

)

Sρ,π\ρ
π Pρ dΦS (ρ) Pπ\ρ dΦS (π \ ρ)

]

Factorial growth of PS-channels tamed

Stefan Höche, Top-Workshop Grenoble, 19.10.2007



COMIX: Performance

QED benchmark processes: ME performance w/o colours
Process # Graphs #Currents/

# Vertices
Time [ s / 10^4 pts ]

AMEGIC++
Time [ s / 10^4 pts ]

COMIX
36 25 / 45 7.2 5.1

158400 336 / 3325 - 2841ττ → 8τ

Phasespace performance in W/Z+jets @ LHC
Cuts:                                         ,  CDF Run II K  -algo @ 20GeV

Process Efficiency Process Efficiency
Z+0 jet 8.50% W+0 jet 19.13%

Z+1 jet 1.05% W+1 jet 1.50%

Z+2 jets 0.60% W+2 jets 0.48%

Z+3 jets 0.15% W+3 jets 0.16%

66GeV ≤ ml̄l ≤ 116GeV T

Stefan Höche, Top-Workshop Grenoble, 19.10.2007

ττ → 4τ



PS’S in Sherpa: APACIC++

a

t

b

cz

c

b

CF
1 + z2

1 − z
CF

1 + (1 − z)2

z

TR

(
z2 + (1 − z)2) 2CA

(1 − z + z2)2

z(1 − z)

1

R. Kuhn, F. Krauss, G. Ivanyi, G. Soff CPC 134 (2001) 223
F. Krauss, A. Schälicke, G. Soff, hep-ph/0503087

Basic features of APACIC++ :

Virtuality ordered parton cascade,
colour coherence imposed 
by angular veto
Final & initial state showering in
e e  & hadron collisions  
( no DIS-like situations )

+ -

Algorithm similar to virtuality 
ordered PYTHIA parton shower
Extensively tested, e.g. vs. LEP data
(hadronisation: PYTHIA)

Stefan Höche, Top-Workshop Grenoble, 19.10.2007
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Virtuality ordered PS       evolution variable    changes to              t − m
2

a

APACIC++: Heavy Quark Production

Splitting functions             become 
those for massive quarks
Nucl. Phys. B627(2002)189
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In quasi-collinear limit (b    heavy quark) ME factorises 

t

|M(b, c, . . . ,n)|2 → |M(a, . . . ,n)|2
8παs

t − m2
a

Pa→bc(z)

TR

(

1 − 2z(1 − z) +
2z(1 − z)m2

q2 + m2

)

CF

(

1 + z2

1 − z
−

2z(1 − z)m2

q2 + (1 − z)2m2

)

Cross-check: 2- and 3-jet fraction
in                   ,  PS vs. ME, weighted 
with NLL Sudakov form factors
Phys. Lett. B576(2003)135

e
+
e
−

→ tt̄

Pab(z)
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t
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cz
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On-shell daughter partons
New decay kinematics via
Lorentz transformation

PS in production PS in decay
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Ptt(z)
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Ptt(z)

a

t

b

cz

c
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1

Off-shell daughter partons
Decay kinematics need 
to be reconstructed
Choice: Reconstruct in cms
of decayed quark, such
that            is preserved→

p/|
→

p|

ISR-like situation
FSR-like situation
Evolution stops once diced
virtuality reaches on-shell
mass of heavy quark

Evolution stops if       reaches 
width of decaying quark

!

Choice: Boost into 
new (daughter) cms
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APACIC++: Heavy Quark Production
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Merging of ME & PS: CKKW

Exact to fixed order 
in running coupling

Basic idea of CKKW: Combine both approaches to have

+ ut

2

u+t

2 2

3

Matrix Elements

Include all quantum
interferences
Calculable only for low 
FS multiplicity (n≤6-8)

Resum all (next-to) leading
logarithms to all orders 
Interference effects only 
through angular ordering

Good description of hard/wide angle radiation (ME)
Correct intrajet evolution (PS)

+ ut

2

u+t

2 2

3

Parton Showers

dσn+1 = dσn ⊗

∑

a∈q,g

dt

t
dz

αs(t, z)

2π
Pa→bc(z)

JHEP 08(2002)015; JHEP 11(2001)063
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CKKW & Heavy Flavours

Narrow width approximation       full ME factorises
into production and decay parts

CKKW is applied separately and completely independent
within production and each decay

Schematically:
b̄

W−

t

b

W+

t̄

1

A(n)
= A

(nprod)
prod ⊗

∏

i∈decays
A

(ni)
dec,i

AMEGIC++ provides decay chain treatment to
project onto relevant Feynman diagrams

APACIC++ provides production & decay shower off heavy partons
Intermediate particle masses distributed according to Breit-Wigner

Generator setup:

Yields all combinations of parton multiplicities in ME up to 
                                              , i.e. 1-0-0, 0-1-0, ... in Nmax,prod ⊗

∏

i∈decays

Nmax,dec i e
+
e
−

→ tt̄
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Q      - variation in production

Top pair production in E E+ -

Sanity check of procedure: Jet differential rates in e e + -

cut Q      - variation in decayscut

Stefan Höche, Top-Workshop Grenoble, 19.10.2007



Top Pair production @ TeVatron

Application:      production at the Tevatrontt̄

      of      pairtt̄p⊥      of first extra jetη

Stefan Höche, Top-Workshop Grenoble, 19.10.2007



Top Pair production @ LHC

Application:      production at the LHCtt̄

      of      pairtt̄p⊥      of first extra jetη

Stefan Höche, Top-Workshop Grenoble, 19.10.2007



Summary

The CKKW-implementation in Sherpa has been extened 
for decay chains, enabling e.g. more elaborate     simulations
A new ME-generator is well under way, pushing limits 
in high-multiplicity tree-level ME-calculations

We currently also work on
New dipole shower approaches      improved ME-PS merging
BSM physics (new models in AMEGIC++)
QED radiation generator (YFS-based)
Hadron decays (B-mixing done !)
...

Stefan Höche, Top-Workshop Grenoble, 19.10.2007

tt̄



Updates on Sherpa can be found on

WWW.sherpa-mc.de

info@sherpa-mc.de

E-mail us on
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This yields the correct jet rates !

CKKW in a nutshell

Define jet resolution parameter Q       (Q-jet measure)
      divide phase space into regions of
      jet production (ME) and jet evolution (PS)

Simple example: 2-jet rate in ee    qq

R2(q) =

(

∆(Qcut, µhard)
∆(q, µhard)

∆(Qcut, µhard)

)2

cut

Select final state multiplicity and kinematics
according to σ  ‘above’ Q cut
KT-cluster backwards (construct PS-tree) 
and identify core process
Reweight ME to obtain exclusive samples at Q
Start the parton shower at the hard scale
Veto all PS emissions harder than Q

cut

cut

4

JHEP 0111 (2001) 063
JHEP 0208 (2002) 015
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