Jet Energy Scale in ATLAS

Pierre-Antoine Delsart

LAPP (Annecy)

Top workshop, Grenoble, october 2007

Introduction

Brief intro to atlas calorimeter

- Key difficulties concerning jets in Atlas and LHC
- Atlas hadronic calibration
- Review of Jet Energy Scale estimation in Atlas

<u>Jet energy scale and resolution :</u> <u>objectives in Atlas</u>

Atlas collaboration has ambitious physics goals Some of them require excellent jet reconstruction - EW precision measurements (Mass of the W) - Top physics

We want to achieve good results on resolution and JES

Resolution

TDR objective
$$\frac{\sigma(E_T)}{E_T} = \frac{0.5}{\sqrt{E_T}} + 0.03$$

Jet Energy Scale

Some studies presented here show 1% is achievable in top studies Can we do as well in general ?

Atlas calorimeters

EM Calorimeter Liq. Ar and Lead Accordeon shape $|\eta| < 2.5$

Hadronic EndCap Liq. Ar and Copper 1.5 < |η| < 3.2

FCAL : Liq. Ar and Copper/tungsten 3.2 < |η| < 4.9

Tile Hadronic Calorimeter : Scintillators and Iron |η| < 1.7

Hadronic energy response in Atlas

Non-compensating Calorimeter : e/h ~ 1.3-1.6 Photon energy in jets at LHC (Pythia 6.2)

Jets contain important El contribution

This is the first effect to correct

Lots on effort on this topic

LHC environement

Physics environment different from Tevatron

 Increased underlying event activity (more phase space)

LHC environement

Pile-up :

- 23 interactions per bunch crossing lots of additional particles per bunch crossing : 370 particle/ rapidity units 1800 charged tracks
- Calorimeter slow in Lar : full response time ~500 ns bunch-crossing every 25ns

Atlas hadronic calibration strategies

The global calibration scheme

Conceptually simple :

- Start from basic EM signal
- Build protojets (towers, clusters)
- Find jets
- Calibrate Jets

Calibration :

- At jet level
- based on cell weighting

by default 'H1-like' (depends on energy density)

Has some disadvantages: in non-compensating calos Try to correct lots of effect with few numbers

In-situ Calibration (underlying event, physics environment, etc.) Refined Physics Jet (calibrated to interaction level)

Atlas hadronic calibration strategies II

Advantages :

- Much better noise suppression
- Factorized corrections Hadronic Dead material Out-of-cluster energy
- Calibrated input: physical interpretation
 ~ massless pseudoparticles

Finding Jet Energy Scale

Several studies done in ATLAS Z+jets, gamma+jets E/Pt in tau samples Di-jets balance In-situ calib through W mass in ttbar samples

Jet Algorithm

First order effect is Jet Algorithm and their main parameter

Jet Algorithms behaves differently under different analysis

Jet Algorithm are differently affected by Pile-up 2006 JetRec June N.Godbhane,

top quark mass distrib for different value of the D parmater of Kt Algo

Energy Scale from Z+jets, gamma+jets

Principle:

- Pt conservation
- Z or gamma are well calibrated objects

Extract information on JES of the jets recoilling against these objects

 Balancing against gamma : large statistic, larger QCD backgrounds Z : clear signal, lower statistics

- Accessible Pt tange ~[40GeV, 400GeV]
- Need to control biais (Trigger, selection procedure...)

- 2 ways of using this events : Pt balance & Missing Et projection

Basic procedure : - select isolated gamma +Ptcut >30GeV - select highest Pt Jet - phi back-to-back cut

Compare parton, particle, reco jets

Extract JES

Z/gam+jets : Pt balance

Several studies have been performed :

- gamma+jets
- Z+jets
- Recoil against 1 or several jets
- Uncertainties :
 - kinematic cuts
 - physics effects

Uncertainties around 3%

Z/gam+jets : Missing Et Projection

Principle : Do not use Jets to estimate the response Project Etmiss against Z direction

$$R = 1 + \frac{E_T^{miss} \cdot \hat{n}_T^Z}{P_T^Z}$$

Measure R in different energy bin Extract JES by fitting the mean values in bins as fct of E

Estimated uncertainty : 2-3 %

In-situ calibration in ttbar studies

Principle : Use W hadronic decays Constraint JES thanks to the well know W mass

Precision on jets angle good enough :

 $M(W)_{PDG} = \sqrt{\alpha(E_1)\alpha(E_2)M(W)_{j_1j_2}}$

Restrictions : Light jets Pt range : 40 – 400 GeV Eta range <2.5

<u>3 Methods in Atlas</u> Chi-squared fit Templates Iterative method

W-> jj : Chi-squared method

$$\chi^{2} = \frac{\left(M_{jj}(\alpha_{1}, \alpha 2) - M_{W}\right)^{2}}{\Gamma_{W}^{2}} + \left(\frac{E_{j1}(1 - \alpha_{1})}{\sigma_{j1}}\right)^{2} + \left(\frac{E_{j2}(1 - \alpha_{2})}{\sigma_{j2}}\right)^{2}$$

Minimize on event-by-event basis

Fit alpha distributions in E bins

JES depends on E only

W-> jj : templates method

 Start from MC ttbar events

 (N. Besson, J schwindling et al)
 energy scales α and relative energy resolutions β

Generate set of histograms for different values of quantities
Fit each template histogram to m_{ii} in the « data », find best χ²

,86°0 Let / Equark 2 jets only 2 jets or more 0.96 0.95 0.94 0.93 0.92 0.9ֆ 50 300 100 150 200 250E_{quark} [GeV]

Mass distribution

W-> jj : Iterative method

Systematics uncertainty estimated <1 %

200

E (GeV

Conclusions

Lots of effort have been made to build a refined calibration scheme provide a good hadronic signal

Several preparation studies for JES and In-situ calibration In top studies the show we can reach 1% uncertainty on JES Can we do as well in general ?

Anyway it will take time to reach this quality Difficult environment Understanding the detector

Experience from Tevatron is very welcome and certainly fruitful