<u>b-tagging commissioning</u> <u>strategy for ATLAS</u>

Workshop on top physics LPSC 18 October 2007 Lorenzo Feligioni

<u>Outline</u>

- Introduction to ATLAS tagging algorithms
 - Spatial tagging:
 - Track impact parameter (IP) combined
 - Secondary vertices (SV)
 - · Jet Probability
 - Soft lepton tagging:
 - \cdot non isolated low $p_{_{\rm T}}$ leptons from B(D) decays
- Performances estimation using tt events
 - Event/tag counting method
 - Topological selection
- Calibration using dijet events
 - muon p_{T}^{rel}
- Conclusions

b-tag weight

P3D+SV

Track selection and b-tag weight

- Only well reconstructed tracks with $p_{\pi}>1$ GeV are used ٠
- For b-tagging IP is calculated wrt PV
- SV mass used to reject K_{s}^{0}/Λ , γ
- b-tag weight: ٠
 - All taggers rely on a comparison between two hypotheses
 - likelihood for the jet coming from a b-quark vs light quark
 - Example: transverse IP sig

10

10

10 -3

10

Impact parameter: IP3D

<u>IP3D:</u> combination of transverse & longitudinal normalized IP

5

Inclusive Secondary Vertex: SV1

IP3D+SV1: performances

- Different cuts on b-tag weight used to achieve different working points
 - efficiency/light rejection
- Light jet rejection depends on the event environment
 - performances are estimated on purified light jets sample:
 - $\Delta R(light, heavy flavored) > 0.8$
- Performances heavily dependent on jet $p_{\scriptscriptstyle T}$ and η

High η : multiple scattering High p_T : higher track density

b-tagging commissioning in ALLAS

JetProb Tagger

- Tagger à la Aleph/Lep (JLIP in DØ):
 - Compatibility of tracks with PV
 - Fit negative side of signed impact parameter w/ resolution function
 - Use it for the positive signed
 IP⇒ track probability
 - Combine tracks in a jet probability
- Resolution functions completely derived with first data
- Expect poorer performances than IP3D+SV1
- But easier to understand
 /calibrate in early data
- Need some development in terms of track categories

b-tagging commissioning in Allas

Soft Leptons

- Br($b \rightarrow \mu \nu X$)+Br($b \rightarrow c \rightarrow \mu \nu X$) ~ 20%
- Small correlation w.r.t. SV tag
 - Can be used for cross calibration
- Soft Muon tagging algorithm:
 - currently Staco+Mutag
 - \cdot high-efficiency down to 4 GeV ${\rm p}_{\rm \scriptscriptstyle T}$
 - 2 steps:
 - · association muon-jet (cone $\Delta R < 0.5$)
 - Likelihood ratios (1D, 2D) for b/light hypothesis using pT, pTrel.
 - Checked performance vs pile-up/cavern bckgd with promising results
- Soft Electron:
 - Likelihood ratio ID+shower shape info from the calorimeter
 - 10% efficiency ~3% mistag rate
 - High contamination from γ conversion (40%)

b-tagging commissioning in ATI

b-tag performances from tt

W iets:

E_T>40 GeV, 20

q

W

b

Hadronic side b-jet:

b-tag (weight>3)

E₊>40 GeV

Leptonic side b-iet:

No tag requirement

E₊>20 GeV

- tt at LHC ~800 pb
 - calibration sample

- Different environment than di-jet studies
- Event/tag counting method
 - Count events with different # of tagged b-jets
 - likelihood fit for $\epsilon_{\rm b}$, $\epsilon_{\rm c}$ and $\sigma_{\rm tt}$
 - Consider semileptonic and dilepton final state
- · Topological and kinematical selection ${\mathop{e}\limits_{e,\,\mu}}$
 - Very energetic events
 - One b-tagged jets
 used to reconstruct hadronic top
 - Background on a 20% level needs to be subtracted using data (control samples)
 - combinatorial background: misassigned jets
 - Physics background: W+heavy flavors

Event/tag counting method

- $L = Poisson(N_1, < N_1 >) \cdot Poisson(N_2, < N_2 >) \cdot Poisson(N_3, < N_3 >)$
- $N_n =$ Number of observed events with n tags
- $< N_n > =$ Expected number of events with n tags : function of ϵ_B , ϵ_C , ϵ_L , $\sigma_{t\bar{t}}$, etc...

$$< N_n >= (L \cdot \sigma_{t\bar{l}} \cdot A_{pre-tag}) \cdot \Sigma_{i,j,k} F_{i,j,k} \Sigma_{combi.} A_i^{i'} \cdot \epsilon_b^{i'} \cdot (1-\epsilon_b)^{i-i'} \cdot A_j^{j'} \cdot \epsilon_c^{j'} \cdot (1-\epsilon_c)^{j-j'} \cdot A_k^{k'} \cdot \epsilon_l^{k'} \cdot (1-\epsilon_l)^{k-k'} i = \# \text{ b-jets and } i' = \# \text{ tagged b-jets} j = \# \text{ c-jets and } j' = \# \text{ tagged c-jets} \\ k = \# \text{ l-jets and } k' = \# \text{ tagged l-jets} \\ F_{i,j,k}^i = \text{ Fraction of events with } i \text{ b-jets, } j \text{ c-jets, } k \text{ l-jets.} \\ A_i^{i'} = i!/(i'! \cdot (i-i')!) \\ \sigma_{t\bar{t}} = \text{ production cross-section} \\ A_{pre-tag} = \text{ acceptance without b-tagging} \\ L = \text{ integrated luminosity}$$

Event/tag counting performances

 Performances on 4 independent MC statistical samples, each equivalent to 100 pb⁻¹

b-tagging commissioning in ATLAS

Event/tag counting systematics

- JES: negligible effect for b-tag efficiency
- Very robust w.r.t to physics background and light quark rejection estimation
 - latter input for the method
- 0.03 absolute uncertainty at $\varepsilon_{\rm b}$ =0.6

- b			
Systematic	$\delta\epsilon_{b}$ (%)	$\delta\sigma_{\rm tt}$ (%)	
Jet energy scale (±5%)	0.3	12	
Light jet rejection (±100%)	0.1	0.1	
Tag correlation	<0.5	<0.5	
Jet labeling	1.4	1.4	
MC statistics	0.5	0.5	
Background (±100% W/Z+jets)	2.5	4	
Total systematic	3	13	
Statistical (100 pb ⁻¹)	3	3	
SC 10/18/07 b-tagging commissioning in ATLAS			

Topological approach using m_{blv} distribution

- Select semileptonic ttbar events
 - Reconstruct m_{bjj} on hadronic side from 'raw' jet energies, cuts on m_w and m_{top}
 - Require b-tag on b-jet, anti-b on W jets
- Use recon mass of leptonic top (m_{blv}) to find region enhanced in b-jets
 - No requirement on b-tag of this jet
 - Leptonic top ensures jets are bflavour
- Have to subtract background from mis-reconstructions
 - Estimate shape from a control sample where hadronic side m_{bjj}>200 GeV, and leptonic top jet is anti b-tagged
 - Estimate flavour composition from signal sample where m_{blv} outside $m_{top} \pm 2\sigma$ (mass sideband region)

<u>b-tagging performance with</u> <u>di-jet samples</u>

<u>b-tagging efficiency: system 8</u>

- Non-linear system (System8 à la D0):
 - 2 samples

٠

- Muon Jets (n)
- MJ + other tag opposite jet Jet (p)
- 2 different b/l fractions
- 2 non-correlated taggers
 - Tracks (impact param./SVT)
 - Soft Muon (pTrel)
- → system can be solved analytically
- Results: (for ~10k MJ)

	True E	S8 result
SMT $(p_T^{rel} > 1 \text{ GeV})$	48%	(45±4)%
IP3D+SV1 (w>4)	75%	(80±10)%

definition of Muon+Jet trigger in progress

<u>b-tagging efficiency: system 8</u>

- Non-linear system (System8 à la D0):
 - 2 samples

٠

- Muon Jets (n)
- MJ + other tag opposite jet Jet (p)
- 2 different b/l fractions
- 2 non-correlated taggers
 - Tracks (impact param./SVT)
 - Soft Muon (pTrel)
- Muon tagger included in recent studies:
 - Allows cross calibration of spatial and soft muon tagger
- Stability study:
 - Stable as a function of the soft mu weight cut applied

b-tagging efficiency: templates

Use the p_{T}^{Rel} of a muon fit those to data to determine tag

Use half the sample to derive the templates, the other half to test.

Vary the b-fraction (f_b) by reducing the # of light jets and test repeatedly.

<u>Conclusions</u>

- ATLAS developed a large variety of spatial b-tagging algorithms
 - More performant (IP3S+SV1):
 - Work on defining negative tags for mistag estimation
 - More robust (JetProb)
 - Easier to calibrate, good for first analyses
 - Need development: implementation of track categories
- Calibration with tt
 - Already in good shape, different approaches, interesting ideas
 - Need to carefully study systematics and effect of physics background.
 - No clear strategy to validate likelihood shapes yet
- Dijet:
 - Work just started look promising
 - Trigger study will tell how much integrated luminosity needed
 - Mistag rate methods under development