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KADATH library

KADATH is a library that implements spectral methods in the

context of theoretical physics.

� It is written in C++, making extensive use of object oriented

programming.

� Versions are maintained via git.

� Website : www.kadath.obspm.fr

� The library is described in the paper : JCP 220, 3334 (2010).

� Designed to be very modular in terms of geometry and type of

equations.

� LateX-like user-interface.

� More general than its predecessor LORENE.
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A test problem

Find the conformal factor Ψ of the Schwarzschild black hole in QI

coordinates.

System of equations

� Bulk : ∆Ψ = 0.

� Inner BC : Ψ,r +
1
2aΨ = 0

� Outer BC : Ψ = 1

a is the radius of the black hole and the solution is

Ψ(r) = 1 +
a

r
.
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Concept in 1D

Given a set of orthogonal functions Φi on an interval Λ, spectral theory

gives a recipe to approximate f by

f ≈ INf =

N∑
i=0

aiΦi

Properties

� the Φi are called the basis functions.

� the ai are the coefficients : it is the quantity stored on the computer.

� Multi-dimensional generalization is done by direct product of basis.

� The computation of the ai comes from the Gauss quadratures.
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Example of interpolant for N = 4
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Example of interpolant for N = 8
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Spectral convergence
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Multi-domain setting

Numerical coordinates

� Space is divided into several numerical domains.

� In each domain there is a link between the physical coordinates X

and the numerical ones X⋆.

� Spectral expansion is performed with respect to X⋆.

� Non-periodic coordinates are expanded wrt to polynomials.

� Periodic coordinates (i.e. angles) are described by trigonometrical

functions.

Example spherical space
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Setting the space in KADATH

// 3D :

i n t dim = 3 ;

// Number o f p o i n t s i n each d imens ion

Dim array r e s ( dim ) ;

r e s . s e t (0 ) = 13 ; r e s . s e t (1 ) = 5 ; r e s . s e t (2 ) = 4 ;

// Cente r o f the c o o r d i n a t e s

Po in t c e n t e r ( dim ) ;

f o r ( i n t i =1 ; i<=dim ; i++)

c e n t e r . s e t ( i ) = 0 ;

// Number o f domains and bounda r i e s :

i n t ndom = 4 ;

Array<double> bounds (ndom=1) ;

// Rad ius o f the BH

double aa = 1.323 ;

bounds . s e t (0 ) = aa ; bounds . s e t (1 ) = 1.7557* aa ; bounds . s e t (2 ) = 2.9861* aa ;

// Chebyshev or Legendre :

i n t t y p e c o l o c = CHEB TYPE ;

// S p h e r i c a l space :

Spa c e s p h e r i c space ( t y p e c o l o c , c en t e r , r e s , bounds ) ;

9



Other spaces available

� Cylindrical space.

� Bispherical space.

� Spaces with periodic time coordinates.

� Spaces with adaptable domains.

� Spaces with various symmetries.

� Additional ones relatively easy to include.
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KADATH management of the spectral basis

� For every computation, KADATH tries to assert the basis of the result.

� Straightforward for things like the product, inverse, sum etc...

� For other computations (like exp, cos,
√
) the base cannot be

directly obtained and is lost.

� Important rule set the base by hand if and only if it is required.

� Be careful when enforcing the standard base. For instance

ρ =
√
x2 + y2 is not expanded onto the standard base.

� Most of the errors in using KADATH come from inappropriate setting

of the basis.
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Setting the fields in KADATH

// I n i t i a l gue s s f o r the con fo rma l f a c t o r :

S c a l a r con f ( space ) ;

con f = 1 . ;

con f . s t d b a s e ( ) ;

// The a n a l y t i c s o l u t i o n ( excep t i n the nu c l e u s )

S c a l a r s o l ( space ) ;

s o l . s e t doma in (0 ) = 0 . ;

f o r ( i n t d=1 ; d<ndom ; d++)

s o l . s e t doma in ( d ) = 1 + aa / space . get domain ( d)=>g e t r a d i u s ( ) ;

s o l . s t d b a s e ( ) ;
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Weighted residual method

Consider a field equation R = 0 (ex. ∆f − S = 0). The discretization

demands that

(R, ξi) = 0 ∀i ≤ N

Properties

� (, ) is the same scalar product as the one used for the spectral

approximation.

� the ξi are called the test functions.

� For the τ -method, the ξi are the basis functions.

� Amounts to cancel the coefficients of R.

� Some equations are relaxed and must be replaced by appropriate

boundary and matching conditions.
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The discrete system

Original system

� Unknowns : tensorial fields.

� Equations : partial derivative equations.

Discretized system

� Unknowns : coefficients u⃗.

� Equations : algebraic system F⃗ (u⃗) = 0.

Properties

� For a linear system F⃗ (u⃗) = 0 ⇐⇒ Ai
ju

j = Si

� In general F⃗ (u⃗) is even not known analytically.

� u⃗ is sought numerically.
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Newton-Raphson iteration

Given a set of field equations with boundary and matching equations,

KADATH translates it into a set of algebraic equations F⃗ (u⃗) = 0, where u⃗

are the unknown coefficients of the fields.

The non-linear system is solved by Newton-Raphson iteration

� Initial guess u⃗0.

� Iteration :

� Compute s⃗i = F⃗ (u⃗i)

� If s⃗i if small enough =⇒ solution.

� Otherwise, one computes the Jacobian : Ji =
∂F⃗

∂u⃗
(u⃗i)

� One solves : Jix⃗i = s⃗i.

� u⃗i+1 = u⃗i − x⃗i.

Convergence is very fast for good initial guesses.
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Computation of the Jacobian

Explicit derivation of the Jacobian can be difficult for complicated sets of

equations.

Automatic differentiation

� Each quantity x is supplemented by its infinitesimal variation δx.

� The dual number is defined as ⟨x, δx⟩.
� All the arithmetic is redefined on dual numbers. For instance

⟨x, δx⟩ × ⟨y, δy⟩ = ⟨x× y, x× δy + δx× y⟩.
� Consider a set of unknown u⃗, and a its variations δu⃗. When F⃗ is

applied to ⟨u⃗, δu⃗⟩, one then gets :
〈
F⃗ (u⃗) , δF⃗ (u⃗)

〉
.

� One can show that

δF⃗ (u⃗) = J (u⃗)× δu⃗

The full Jacobian is generated column by column, by taking all the

possible values for δu⃗, at the price of a computation roughly twice as

long.
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Numerical resources

Consider Nu unknown fields, in Nd domains, with d dimensions. If the

resolution is N in each dimension, the Jacobian is an m×m matrix with :

m ≈ Nd ×Nu ×Nd

For Nd = 5, Nu = 5, N = 20 and d = 3, one reaches m = 200 000

Solution

� The matrix is distributed on several processors.

� Easy because the Jacobian is computed column by column.

� The library SCALAPACK is used to invert the distributed matrix.

� d = 1 problems : sequential.

� d = 2 problems : 100 processors (mesocenters).

� d = 3 problems : 1000 processors (national supercomputers).
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Solving the system with KADATH

// So l v e the equa t i on i n space o u t s i d e the nu c l e u s

Sy s t em o f eq s s y s t ( space , 1 , ndom=1) ;

// Only one unknown

s y s t . add va r ( ”P” , con f ) ;

// One u s e r d e f i n e d con s t an t

s y s t . a dd c s t ( ”a” , aa ) ;

// I n n e r BC

s y s t . eq eq bc (1 , INNER BC , ”dn (P)+0.5/ a*P=0” ) ;

f o r ( i n t d=1 ; d<ndom ; d++) {
// Bulk equa t i on (2 nd o r d e r )

s y s t . a d d e q i n s i d e (d , ”Lap (P)=0” ) ;

i f ( d!=ndom=1) {
// Matching o f the s o l u t i o n

s y s t . add eq match ing (d , OUTER BC, ”P” ) ;

// Matching o f the r a d i a l d e r i v a t i v e

s y s t . add eq match ing (d , OUTER BC, ”dn (P) ” ) ;

}
// Outer BC

s y s t . add eq bc (ndom=1, OUTER BC, ”P=1” ) ;

// Newton=Raphson

double conv ;

boo l end loop = f a l s e ;

i n t i t e = 1 ;

wh i l e ( ! end loop ) {
end loop = s y s t . do newton (1 e=8, conv ) ;

cout << ”Newton i t e r a t i o n ” << i t e << ” ” << conv << end l ;

i t e++ ;

}
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Advanced topics : definitions

� When an expression of the unknowns appears often.

� That expression can be made into a definition.

� Simplifies the writing of the equations.

� Makes the code faster as the definitions are computed only when

needed.

// E x t r i n s i c c u r v a t u r e t e n s o r

s y s t . add de f ( ” K i j =(D i B j+D j B i )2/N” ) ;

// Can be used i n o th e r e x p r e s s i o n s

// Hami l ton i an c o n s t r a i n t

s y s t . add de f ( ”H=R=K i j*Kˆ i j ” ) ;

// Momentum c o n s t r a i n t s

s y s t . add de f ( ”Mˆ i=D j Kˆ i j ” ) ;

19



Advanced topics : metrics

� Special type of second order tensor.

� Enables the index manipulation.

� Enables the use of covariant derivative.

� Enables the use of Riemann and Ricci tensors

// D e f i n i t i o n o f a me t r i c ( from a second o r d e r t e n s o r )

// Here met i s an unknown a l s o ( use Me t r i c c o n s t o t h e rw i s e )

Me t r i c g e n e r a l met ( gmet ) ;

// A s s o c i a t e s the me t r i c to the system

met . s e t s y s t em ( s y s t , ”g” ) ;

// Now you can compute t h i n g s l i k e

s y s t . add de f ( ”derN=D i N” ) ;

// The R i c c i i s known

s y s t . add de f ( ” R i c c i i j=R i j ” ) ;
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Advanced topics : global unknowns

� Some unknowns are numbers, not fields.

� Associated with integral equations.

double omega = 0 . ;

// Omega i s an unknown

s y s t . add va r ( ”ome” , omega ) ;

// Equ a l i t y o f the ADM and Komar masses f o r c e s the r i g h t v a l u e o f omega

// Can be e x p r e s s e d as

space . a d d e q i n t i n f ( s y s t , ” i n t e g ( dn (N)+2*dn (P))=0” ) ;
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Last words

� Additional specialized features (adapted domains).

� Many successful applications (boson stars, hairy black holes, initial

data for general relativity).

� Additional functionalities are included regularly.

� The number of users increases, at last...
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Try it...

Kadath website (https ://kadath.obspm.fr) has some tutorials... Have

fun...
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