An overview of the Kadath library

Philippe Grandclément

API ondes gravitationnelles, Meudon, 17 novembre 2023

Laboratoire de l'Univers et Théories (LUTH) CNRS / Observatoire de Paris F-92195 Meudon, France

philippe.grandclement@obspm.fr

KADATH library

KADATH is a library that implements spectral methods in the context of theoretical physics.

- It is written in C++, making extensive use of object oriented programming.
- Versions are maintained via git.
- Website : www.kadath.obspm.fr
- The library is described in the paper : JCP 220, 3334 (2010).
- Designed to be very modular in terms of geometry and type of equations.
- LateX-like user-interface.
- More general than its predecessor LORENE.

Find the conformal factor Ψ of the Schwarzschild black hole in QI coordinates.

System of equations

- Bulk : $\Delta \Psi = 0$.
- Inner BC : $\Psi_{,r} + \frac{1}{2a}\Psi = 0$
- Outer BC : $\Psi = 1$

a is the radius of the black hole and the solution is

$$\Psi\left(r\right) = 1 + \frac{a}{r}.$$

Concept in 1D

Given a set of orthogonal functions Φ_i on an interval Λ , spectral theory gives a recipe to approximate f by

$$f \approx I_N f = \sum_{i=0}^N a_i \Phi_i$$

Properties

- the Φ_i are called the basis functions.
- the *a_i* are the coefficients : it is the quantity stored on the computer.
- Multi-dimensional generalization is done by direct product of basis.
- The computation of the *a_i* comes from the Gauss quadratures.

Example of interpolant for N = 4

blue curve $f(x) = \cos^{3}(\pi x/2) + (x+1)^{3}/8$; orange : $I_{4}f$.

Example of interpolant for N = 8

blue curve $f(x) = \cos^{3}(\pi x/2) + (x+1)^{3}/8$; orange : $I_{8}f$.

Spectral convergence

Multi-domain setting

Numerical coordinates

- Space is divided into several numerical domains.
- In each domain there is a link between the physical coordinates X and the numerical ones X^{*}.
- Spectral expansion is performed with respect to X^{\star} .
- Non-periodic coordinates are expanded wrt to polynomials.
- Periodic coordinates (i.e. angles) are described by trigonometrical functions.

Example spherical space

Setting the space in KADATH

```
// 3D :
int dim = 3:
// Number of points in each dimension
Dim_array res (dim) ;
res.set(0) = 13; res.set(1) = 5; res.set(2) = 4;
// Center of the coordinates
Point center (dim) ;
for (int i=1 ; i<=dim ; i++)</pre>
     center.set(i) = 0 ;
// Number of domains and boundaries :
int ndom = 4 :
Array<double> bounds (ndom-1) ;
// Radius of the BH
double aa = 1.323;
bounds.set(0) = aa ; bounds.set(1) = 1.7557*aa ; bounds.set(2) = 2.9861*aa ;
// Chebyshev or Legendre :
int type_coloc = CHEB_TYPE ;
// Spherical space :
Space_spheric space(type_coloc, center, res, bounds) ;
```

Other spaces available

- Cylindrical space.
- Bispherical space.
- Spaces with periodic time coordinates.
- Spaces with adaptable domains.
- Spaces with various symmetries.
- Additional ones relatively easy to include.

KADATH management of the spectral basis

- For every computation, KADATH tries to assert the basis of the result.
- Straightforward for things like the product, inverse, sum etc...
- For other computations (like exp, cos, √) the base cannot be directly obtained and is lost.
- Important rule set the base by hand if and only if it is required.
- Be careful when enforcing the standard base. For instance $\rho=\sqrt{x^2+y^2}$ is not expanded onto the standard base.
- Most of the errors in using KADATH come from inappropriate setting of the basis.

Weighted residual method

Consider a field equation R = 0 (ex. $\Delta f - S = 0$). The discretization demands that

 $(R,\xi_i) = 0 \quad \forall i \le N$

Properties

- (,) is the same scalar product as the one used for the spectral approximation.
- the ξ_i are called the test functions.
- For the au-method, the ξ_i are the basis functions.
- Amounts to cancel the coefficients of R.
- Some equations are relaxed and must be replaced by appropriate boundary and matching conditions.

The discrete system

Original system

- Unknowns : tensorial fields.
- Equations : partial derivative equations.

Discretized system

- Unknowns : coefficients \vec{u} .
- Equations : algebraic system $\vec{F}(\vec{u}) = 0$.

Properties

- For a linear system $\vec{F}\left(\vec{u}\right) = 0 \Longleftrightarrow A^{i}_{j}u^{j} = S^{i}$
- In general $\vec{F}(\vec{u})$ is even not known analytically.
- \vec{u} is sought numerically.

Given a set of field equations with boundary and matching equations, KADATH translates it into a set of algebraic equations $\vec{F}(\vec{u}) = 0$, where \vec{u} are the unknown coefficients of the fields.

The non-linear system is solved by Newton-Raphson iteration

- Initial guess \vec{u}_0 .
- Iteration :
 - Compute $\vec{s}_i = \vec{F}(\vec{u}_i)$
 - If \vec{s}_i if small enough \implies solution.
 - Otherwise, one computes the Jacobian : $\mathbf{J}_i = \frac{\partial \vec{F}}{\partial \vec{\sigma}} \left(\vec{u}_i \right)$
 - One solves : $\mathbf{J}_i \vec{x}_i = \vec{s}_i$.
 - $\vec{u}_{i+1} = \vec{u}_i \vec{x}_i$.

Convergence is very fast for good initial guesses.

Computation of the Jacobian

Explicit derivation of the Jacobian can be difficult for complicated sets of equations.

Automatic differentiation

- Each quantity x is supplemented by its infinitesimal variation δx .
- The dual number is defined as $\langle x, \delta x \rangle$.
- All the arithmetic is redefined on dual numbers. For instance $\langle x, \delta x \rangle \times \langle y, \delta y \rangle = \langle x \times y, x \times \delta y + \delta x \times y \rangle$.
- Consider a set of unknown \vec{u} , and a its variations $\delta \vec{u}$. When \vec{F} is applied to $\langle \vec{u}, \delta \vec{u} \rangle$, one then gets : $\langle \vec{F}(\vec{u}), \delta \vec{F}(\vec{u}) \rangle$.
- One can show that

 $\delta \vec{F}\left(\vec{u}\right) = \mathbf{J}\left(\vec{u}\right) \times \delta \vec{u}$

The full Jacobian is generated *column by column*, by taking all the possible values for $\delta \vec{u}$, at the price of a computation roughly twice as long.

Numerical resources

Consider N_u unknown fields, in N_d domains, with d dimensions. If the resolution is N in each dimension, the Jacobian is an $m \times m$ matrix with :

 $m \approx N_d \times N_u \times N^d$

For $N_d = 5$, $N_u = 5$, N = 20 and d = 3, one reaches $m = 200\,000$ Solution

- The matrix is distributed on several processors.
- Easy because the Jacobian is computed column by column.
- The library SCALAPACK is used to invert the distributed matrix.
- d = 1 problems : sequential.
- d = 2 problems : 100 processors (mesocenters).
- d = 3 problems : 1000 processors (national supercomputers).

Solving the system with KADATH

```
// Solve the equation in space outside the nucleus
System_of_eqs syst (space, 1, ndom-1) ;
// Only one unknown
syst.add_var ("P", conf) ;
// One user defined constant
syst.add_cst ("a". aa) :
// Inner BC
syst.eq_eq_bc (1, INNER_BC, "dn(P)+0.5/a*P=0");
for (int d=1 : d<ndom : d++) {</pre>
        // Bulk equation (2nd order)
        syst.add_eq_inside (d, "Lap(P)=0") ;
        if (d!=ndom-1) {
                // Matching of the solution
                syst.add_eg_matching (d. OUTER_BC. "P") :
                // Matching of the radial derivative
                syst.add_eq_matching (d, OUTER_BC, "dn(P)") ;
}
// Outer BC
syst.add_eg_bc (ndom-1, OUTER_BC, "P=1") ;
// Newton-Raphson
double conv :
bool endloop = false ;
int ite = 1 ;
while (!endloop) {
        endloop = syst.do_newton(1e-8, conv) ;
        cout << "Newton_iteration_" << ite << "_" << conv << endl ;
        ite++ :
```

- When an expression of the unknowns appears often.
- That expression can be made into a definition.
- Simplifies the writing of the equations.
- Makes the code faster as the definitions are computed only when needed.

```
// Extrinsic curvature tensor
syst.add.def ("K_ij=(D_i_B_j+D_j_B_i)2/N");
// Can be used in other expressions
// Hamiltonian constraint
syst.add.def ("HER-K_ij*K^ij");
// Momentum constraints
syst.add.def ("M^i=D_j_K^ij");
```

Advanced topics : metrics

- Special type of second order tensor.
- Enables the index manipulation.
- Enables the use of covariant derivative.
- Enables the use of Riemann and Ricci tensors

```
// Definition of a metric (from a second order tensor)
// Here met is an unknown also (use Metric_const otherwise)
Metric_general met (gmet) ;
// Associates the metric to the system
met.set_system (syst, "g") ;
// Now you can compute things like
syst.add.def ("derN=Di_N") ;
// The Ricci is known
syst.add.def ("Ricci.ij=R.ij") ;
```

Advanced topics : global unknowns

- Some unknowns are numbers, not fields.
- Associated with integral equations.

```
double omega = 0. ;
// Omega is an unknown
syst.add.var ("ome", omega) ;
// Equality of the ADM and Komar masses forces the right value of omega
// Can be expressed as
space.add_eq_int_inf (syst, "integ(dn(N)+2•dn(P))=0") ;
```

- Additional specialized features (adapted domains).
- Many successful applications (boson stars, hairy black holes, initial data for general relativity).
- Additional functionalities are included regularly.
- The number of users increases, at last...

Try it...

Kadath website (https ://kadath.obspm.fr) has some tutorials... Have fun...

