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Background

Physical system: A spinning (Kerr) BH in the ringdown stage (result of a BBH
merger).

Final Kerr BH oscillates at the quasinormal mode (QNM) frequencies.
Determining QNM frequencies 1s essential for GW data analysis.

Objective: work towards improving the spectral variants of Leaver’s method of
[1410.7698 (Cook & Zalutskiy)] and [1908.10377 (Leo Stein)] (¢nm python package of BHP Toolkit).
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Quasinormal mode frequencies

Notation: w, = QNM frequency.

a = BH spin.
QNM frequencies are complex.
wy = wy(a) with0 < a < 1.

Labeled by (n, [, m): overtone &
spheroidal harmonic number
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Quasinormal mode frequencies

Notation: o, = QNM frequency.
a = BH spin.

QNM frequencies are complex.

Labeled by (n, [, m): overtone &
spheroidal harmonic number

Note: We will use fake QNM curves
for simplicity.
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QNM frequency w,: root of ¢(w) = 0
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QNM frequency w,: root of ¢(w) = 0

e m,’s are solutions of € (w) = 0 (via
Newton-Raphson root finding)
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QNM frequency w,: root of ¢(w,a) = 0
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QNM frequency w,: root of ¢(w,a) = 0
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e w,'s are solutions of ¢ (w; a) = 0. (via 2.
Newton-Raphson root finding) A Re w
T2 4 6 8 10 ’
e Finding w,’s ~ parameterized (by a) ;
numerical root-finding problem. 10l

e Important: Distinguish b/w €' (w, a)
(bottom) and 600 (up).

9 a=025 — a=0.2



wp(a,) as a starting guess to find w(a, + da)
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wp(a,) as a starting guess to find w(a, + da)

e Previously found wy(a) 1s used as a
guess to find wy(a + da).

e Root can’t be found if the guess is too
far = must take small steps
(da ~ 0.02) in BH spin a.

e We can take large steps (da ~ 0.25) in a
if we have dw,/da.
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Results

Previously found w(a) is used as a
guess to find wy(a + da).

Root can’t be found if the guess is too
far = must take small steps
(da ~ 0.02) in BH spin a.

We can take large steps (da ~ 0.25) in a
if we have dw/da.

Result: we provide dw,/da analytically.
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Recall...
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Results

Previously found wy(a) 1s used as a guess to
find wy(a + da).

Root can’t be found if the guess 1s too far
—> take small steps (da ~ 0.02) in BH
spin da.

We can take large steps (da ~ 0.25) in a if
we have dw,/da.

Result: we provide dw,/da analytically.

Result: we provide d'é'/dw for Newton-
Raphson analytically.
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Results

Previously found w(a) is used as a guess to
find wy(a + da).

Root can’t be found if the guess is too far
—> take small steps (da ~ 0.02) in BH
spin d.

We can take large steps (da ~ 0.25) in a if
we have dw,/da.

Result: we provide dw,/da analytically.

Result: we provide d€/dw for Newton-
Raphson analytically.

Analytical derivatives preferred over

numerical ones (see Secs. 5.7, 9.4, 9.6, and 9.7 of
Numerical Recipes in C).
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Another purpose of derivatives
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Another purpose of derivatives

7 KRe. “o

While following red curve, we do not want to land on the blue curve.



Another purpose of derivatives
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dwy/da allow us to follow the red QNM curve.
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e We deliver (dwy/da, d€¢/dw, dA/da).
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e I lied; we have 2 equations in 2 R TROTEDTIION

unknowns (w,, A);
A = eigenvalue.

e We deliver (dwy/da, d€¢/dw, dA/da).
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Inspiration from quantum mechanics

e | lied; we have 2 equations in 2
unknowns (@, A);

A = eigenvalue.

e We deliver (dwy/da, d€/dw, dA/da).

e Redo Griffiths” quantum mechanical
perturbation theory with a non-
Hermitian matrix.
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Summary

e Result: we provided derivatives (dw,/da, d'€¢/dw &

dAlda) to make QNM frequency computation more
efficient and robust.

e Result: dw,/da lets us take larger step sizes
da ~ 0.02 — 0.25.

e Future: Calculate and incorporate d“w,/da*; can
let us take da ~ 0.65.

e Future: apply this method to beyond Kerr QNMs
(within GR) and beyond GR; method seems
adaptable.

o Refs: arXiv: 2210.03657, github.com/sashwattanay/qnm
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