Atelier API "Ondes gravitationnelles et objets compacts"

Making Kerr quasinormal mode frequency computation robust

Sashwat Tanay (LUTH, Observatoire de Paris) with Leo Stein (Univ. of Mississippi)

sashwat.tanay@obspm.fr

• **Physical system:** A spinning (Kerr) BH in the ringdown stage (result of a BBH merger).

• **Physical system:** A spinning (Kerr) BH in the ringdown stage (result of a BBH

- merger).
- Final Kerr BH oscillates at the quasinormal mode (QNM) frequencies.

- merger).
- Final Kerr BH oscillates at the quasinormal mode (QNM) frequencies.
- Determining QNM frequencies is essential for GW data analysis.

• **Physical system:** A spinning (Kerr) BH in the ringdown stage (result of a BBH

- **Physical system:** A spinning (Kerr) BH in the ringdown stage (result of a BBH merger).
- Final Kerr BH oscillates at the quasinormal mode (QNM) frequencies.
- Determining QNM frequencies is essential for GW data analysis.
- **Objective:** work towards improving the spectral variants of Leaver's method of *[1410.7698 (Cook & Zalutskiy)]* and *[1908.10377 (Leo Stein)]* (*qnm* python package of *BHPToolkit*).

• Notation: ω_0 = QNM frequency. $a = BH$ spin.

- **Notation:** $\omega_0 = QNM$ frequency. $a = BH$ spin.
- QNM frequencies are complex.

- Notation: ω_0 = QNM frequency. $a = BH$ spin.
- QNM frequencies are complex.
- $\bullet \ \omega_0 = \omega_0(a)$ with $0 < a < 1$.

- **Notation:** $\omega_0 = QNM$ frequency. $a = BH$ spin.
- QNM frequencies are complex.
- $\omega_0 = \omega_0(a)$ with $0 < a < 1$.
- Labeled by (n, l, m) : overtone & spheroidal harmonic number

- **Notation:** $\omega_0 = QNM$ frequency. $a = BH$ spin.
- QNM frequencies are complex.
- $\omega_0 = \omega_0(a)$ with $0 < a < 1$.
- Labeled by (n, l, m) : overtone & spheroidal harmonic number
- **Note:** We will use fake QNM curves for simplicity.

Re ω

• ω_0 's are solutions of $\mathcal{C}(\omega) = 0$ (via Newton-Raphson root finding) ω_0 's are solutions of $\mathcal{C}(\omega) = 0$

Re ω

QNM frequency ω_0 : **root** of $\mathscr{C}(\omega, a) = 0$

- ω_0 's are solutions of $\mathcal{C}(\omega; a) = 0$ (via Newton-Raphson root finding). ω_0 's are solutions of $\mathscr{C}(\omega; a) = 0$
- Finding ω_0 's ~ parameterized *(by a)* numerical root-finding problem.

- ω_0 's are solutions of $\mathcal{C}(\omega; a) = 0$. (via Newton-Raphson root finding)
- Finding ω_0 's ~ parameterized *(by a)* numerical root-finding problem.
- **• Important:** Distinguish b/w (*ω*, *a*) (*bottom*) and ω_0 (*up*).

-
-
-
-
-
-
-
- -

-
-
-
-
-
-
-
- -

-
-
-
-
-
-
-
- -

• Previously found $\omega_0(a)$ is used as a guess to find $\omega_0(a + da)$.

- Previously found $\omega_0(a)$ is used as a guess to find $\omega_0(a + da)$.
- Root can't be found if the guess is too $far \implies must take small steps$ $(da \sim 0.02)$ in BH spin a.

- Previously found $\omega_0(a)$ is used as a guess to find $\omega_0(a + da)$.
- Root can't be found if the guess is too $far \implies must take small steps$ $(da \sim 0.02)$ in BH spin a.
- We can take large steps $(da \sim 0.25)$ in a if we have $d\omega_0 / da$.

10 $a=1$ 8 6 $\overline{4}$ $\overline{2}$

 \mathcal{P}

6

8

10

 $Im \omega_0$

- Previously found $\omega_0(a)$ is used as a guess to find $\omega_0(a+da)$.
- Root can't be found if the guess is too $far \implies must take small steps$ $(da \sim 0.02)$ in BH spin a.
- We can take large steps $(da \sim 0.25)$ in a if we have $d\omega_0 / da$.
- Result: we provide $d\omega_0/da$ analytically.

Results

Recall...

 17

 $\text{Re}\,\omega$

Results

- Previously found $\omega_0(a)$ is used as a guess to find $\omega_0(a + da)$.
- Root can't be found if the guess is too far \implies take small steps (*da* ~ 0.02) in BH spin a.
- We can take large steps $(da \sim 0.25)$ in a if we have $d\omega_0/da$.
- **Result:** we provide $d\omega_0 / da$ analytically.
- Result: we provide $d\mathcal{C}/d\omega$ for Newton-Raphson analytically.

Results

- Previously found $\omega_0(a)$ is used as a guess to find $\omega_0(a + da)$.
- Root can't be found if the guess is too far \implies take small steps ($da \sim 0.02$) in BH spin a.
- We can take large steps $(da \sim 0.25)$ in a if we have $d\omega_0/da$.
- **Result:** we provide $d\omega_0 / da$ analytically.
- Result: we provide $d\mathcal{C}/d\omega$ for Newton-Raphson analytically.
- Analytical derivatives preferred over numerical ones *(see Secs. 5.7, 9.4, 9.6, and 9.7 of Numerical Recipes in C).*

Another purpose of derivatives

 $1=6$, m = 2

QNM curves intersect *[1410.7698 (Cook & Zalutskiy)]*

Another purpose of derivatives

While following red curve, we do not want to land on the blue curve.

Another purpose of derivatives

 $d\omega_0/da$ allow us to follow the red QNM curve.

• I lied; we have 2 equations in 2 unknowns (ω_0 , A); eigenvalue. *A* =

- I lied; we have 2 equations in 2 unknowns (ω_0, A) ; $A = eigenvalue.$
- We deliver $(d\omega_0/da, d\mathcal{C}/d\omega, dA/da)$.

- I lied; we have 2 equations in 2 unknowns (ω_0, A) ; $A = eigenvalue.$
- We deliver $(d\omega_0/da, d\mathcal{C}/d\omega, dA/da)$.

INTRODUCTION TO QUANTUM MECHANICS **THREE CRIFFITHS**
CRIFFITHS

INTRODUCTION TO JANTUM MĚCHANICS

- I lied; we have 2 equations in 2 unknowns (ω_0 , A); eigenvalue. *A* =
- We deliver $(d\omega_0 / da, d\mathcal{C} / da, dA / da)$.
- Redo Griffiths' quantum mechanical perturbation theory with a *non-Hermitian* matrix.

INTRODUCTION TO QUANTUM MECHANICS NOLLICE
GRIHLL **GRIFFITHS**
SCHROETER

INTRODUCTION TO JANTUM **MECHANICS**

DAVID J. GRIFFITHS **DARRELL F. SCHROETER**

Summary

- **Result:** we provided derivatives $(d\omega_0/da, d\mathcal{C}/da)$ &) to make QNM frequency computation more *dA*/*da* efficient and robust.
- **Result:** $d\omega_0/da$ lets us take larger step sizes $da \sim 0.02 \to 0.25$.
- **Future:** Calculate and incorporate $d^2\omega_0 / da^2$; can let us take $da \sim 0.65$.
- **• Future:** apply this method to beyond Kerr QNMs (within GR) and beyond GR; method seems adaptable.
- **• Refs:** *arXiv: 2210.03657, github.com/sashwattanay/qnm [sashwat.tanay@obspm.fr](mailto:beyondsashwat.tanay@obspm.fr)*

