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Background

• Physical system: A spinning (Kerr) BH in the ringdown stage (result of a BBH 
merger).

• Final Kerr BH oscillates at the quasinormal mode (QNM) frequencies.

• Determining QNM frequencies is essential for GW data analysis.

• Objective: work towards improving the spectral variants of Leaver’s method of 
[1410.7698 (Cook & Zalutskiy)] and [1908.10377 (Leo Stein)] (qnm python package of BHPToolkit).
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• Notation:  = QNM frequency.           
BH spin.  
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• Notation:  = QNM frequency.           
BH spin.  

• QNM frequencies are complex. 

•   with  

• Labeled by : overtone & 
spheroidal harmonic number 

• Note: We will use fake QNM curves 
for simplicity.

ω0
a =

ω0 = ω0(a) 0 < a < 1.
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QNM frequency : root of ω0 𝒞(ω) = 0
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QNM frequency : root of ω0 𝒞(ω) = 0

• ’s are solutions of  (via 
Newton-Raphson root finding)
ω0 𝒞(ω) = 0

7

1.5 2.0 2.5 3.0 3.5
Reω

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0



a=0

a=1

2 4 6 8 10
Reω0

2

4

6

8

10

Imω0



• ’s are solutions of  (via 
Newton-Raphson root finding). 

• Finding ’s    parameterized (by ) 
numerical root-finding problem.

ω0 𝒞(ω; a) = 0

ω0 ∼ a
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• ’s are solutions of . (via 
Newton-Raphson root finding) 

• Finding ’s  parameterized (by ) 
numerical root-finding problem. 

• Important: Distinguish b/w  
(bottom) and  (up).

ω0 𝒞(ω; a) = 0

ω0 ∼ a

𝒞(ω, a)
ω0
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 as a starting guess to find ω0(a0) ω(a0 + da)

• Previously found  is used as a 
guess to find .

ω0(a)
ω0(a + da)
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• Previously found  is used as a 
guess to find . 

• Root can’t be found if the guess is too 
far   must take small steps 
( ) in BH spin .
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 as a starting guess to find ω0(a0) ω(a0 + da)

• Previously found  is used as a 
guess to find . 

• Root can’t be found if the guess is too 
far   must take small steps 
( ) in BH spin . 

• We can take large steps ( ) in  
if we have .
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ω0(a + da)

⟹
da ∼ 0.02 a

da ∼ 0.25 a
dω0/da
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Results

• Previously found  is used as a 
guess to find . 

• Root can’t be found if the guess is too 
far   must take small steps 
( ) in BH spin . 

• We can take large steps ( ) in  
if we have . 

• Result: we provide  analytically.
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Results

• Previously found  is used as a guess to 
find . 

• Root can’t be found if the guess is too far  
   take small steps ( ) in BH 

spin . 

• We can take large steps ( ) in  if 
we have . 

• Result: we provide  analytically. 

• Result: we provide  for Newton-
Raphson analytically.

ω0(a)
ω0(a + da)

⟹ da ∼ 0.02
a

da ∼ 0.25 a
dω0/da

dω0/da

d𝒞/dω
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Results

• Previously found  is used as a guess to 
find . 

• Root can’t be found if the guess is too far  
  take small steps ( ) in BH 

spin . 

• We can take large steps ( ) in  if 
we have . 

• Result: we provide  analytically. 

• Result: we provide  for Newton-
Raphson analytically. 

• Analytical derivatives preferred over 
numerical ones (see Secs. 5.7, 9.4, 9.6, and 9.7 of 
Numerical Recipes in C).
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Another purpose of derivatives
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 QNM curves intersect [1410.7698 (Cook & Zalutskiy)]
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While following red curve, we do not want to land on the blue curve.
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 allow us to follow the red QNM curve.dω0/da
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Inspiration from quantum mechanics

• I lied; we have 2 equations in 2 
unknowns ;                           

eigenvalue. 

• We deliver ( , , ). 

• Redo Griffiths’ quantum mechanical 
perturbation theory with a non-
Hermitian matrix.

(ω0, A)
A =

dω0/da d𝒞/dω dA/da
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Summary
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• Result: we provided derivatives ( ,  & 
) to make QNM frequency computation more 

efficient and robust. 

• Result:  lets us take larger step sizes 
. 

• Future: Calculate and incorporate ; can 
let us take . 

• Future: apply this method to beyond Kerr QNMs 
(within GR) and beyond GR; method seems 
adaptable. 

• Refs: arXiv: 2210.03657, github.com/sashwattanay/qnm  
sashwat.tanay@obspm.fr

dω0/da d𝒞/dω
dA/da

dω0/da
da ∼ 0.02 → 0.25

d2ω0/da2

da ∼ 0.65
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