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The Standard Model of Particle Physics

The fundamental model of physics
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The Standard Model of Particle Physics

The fundamental model of physics
Discovery plot 4.7.2012
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The Large Hadron Collider

The accelerator complex

® A 27 km circumference accelerator ring with two counter-rotating beams
e Up to 14 TeV collisions of bunches of 10" protons every 25 ns (40 MHz) at interaction points
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ATLAS
The detector
® ATLAS detector is one of the general purpose detectors in the LHC
® Each subdetector is specialized in measuring different properties of particles
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ATLAS

The detector

Spectrometer

Tracking system
® Measures the direction and
momenta of charged particles
Electromagnetic calorimeter

® Measures the energy of Hadrans
electromagnetically interacting Celoriey
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ATLAS Liquid Argon Calorimeter

Energy reconstruction in the LAr calorimeter

The Liquid Argon Calorimeter (LAr) mainly measures the energy deposited by
electromagnetically interacting particles
® Consisting of &~ 182 000 calorimeter cells

® Passing particles ionize the material
® Bipolar pulse shape with total length of up to 800 ns (32 BCs)
® Pulse is sampled and digitized at 40MHz

® Energy reconstruction is done using the digitized samples from the pulse
® Computed real-time and used in triggering decision
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The Phase-Il Upgrade of the LHC

Upgrade of the ATLAS experiment
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® The High Luminosity LHC (HL-LHC) is an important milestone for particle physics
® Increase the luminosity to study rare processes
® High pileup: up to 200 p-p collisions per bunch crossing

® The detectors will be upgraded to cope with the high pileup at the HL-LHC
® |n particular the ATLAS calorimeter readout electronics will be completely replaced



Phase-Ill Upgrade of the Liquid Argon Calorimeter

LAr Electronics upgrade

® Increased luminosity requires
® Higher granularity at trigger
® Increased trigger rate
® Frontend electronics amplify,
shape and digitize the LAr
electrical signal at 40 MHz
® Backend processing board: LASP

® 40 MHz energy computation at
full granularity

® Send data to trigger at 40 MHz

® Readout at 1 MHz (trigger accept)

® Designed at CPPM

Lar Calorimeter Cells
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LASP Board

LAr Electronics Upgrade

® LASP board contains two high-end FPGAs (Field Programmable Gate Arrays)
® Only technology available to handle high throughput (1Tb/s per board)
® Able to use neural networks but with FPGA constraints

® 384 LAr channels per FPGA: small NNs
® 125 ns latency requirement at 40 MHz: fast NNs
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FPGA Resources

Comparison of FPGAs

Arria is used in Phase-| boards
Stratix in the demonstrator board

Agilex chosen for the production
boards
Important resources for NNs
® Adaptive Logic Modules (ALMs) for
additions
® Digital Signal Processor (DSPs) for
multiplications
Arria and Stratix allows two
multiplications with a single DSP

Agilex allows four multiplications
per DSP

Resources
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DSPs
—e— Multiplications
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FPGA family




Energy Reconstruction

Energy reconstruction in the LAr calorimeter

® Current energy reconstruction uses the
Optimal Filtering algorithm (OFMax)

® Energy reconstruction from amplitude

® Timing 7 from pulse phase changes

® Quality and bunch crossing identification
® Searches of long-lived particles
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Total Noise [MeV]

OF Performance in Phase-ll

Increasing pileup
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Reduced performance as average pileup (u) increases
Large drop in performance in the case of overlapping pulses (low time gap)
Requires a better energy reconstruction method: neural networks
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2. Network Architectures



Neural Networks

The neuron as the building block

® Neuron is the building block in neural networks

e Activation: non-linear function allowing learning non-linear relationships in data
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Neural Networks

Feed Forward Networks

® Neural networks consist of stacked layers of neurons
® Known as the Feed Forward Network or Dense network
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RNN Architecture

Time series processing with Recurrent Neural Networks (RNNs)

® Recurrent Neural Networks (RNNs) are designed to process time series data
® Natural choice for processing ADC sequence from the LAr detector
® The RNN cell combines new time input with past processed state

¢ Information about the past encoded in the state
® Suitable to correct pileup from past events

O OBOMOENO




RNN Cell

RNN cell types

e Simple RNN is the smallest RNN structure
® Fewer parameters, limited memory

® Rectified Linear Unit (ReLU) activation

® Long Short-Term Memory (LSTM) network for efficiently handling past information
® More parameters, gated structure improves memory
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A

RelLU

~

LSTM

A
™

SP)

\ 4



RNNs for Energy Reconstruction

Using sliding window RNN for energy reconstruction

E,[GeV]
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3. Network Performance on a Single Calorimeter Cell



ATLAS Simulated Dataset

Simulation of a single calorimeter cell
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® ATLAS Readout Simulator (AREUS) is used for continuous simulation of a single LAr cell
® Minimum bias events at different (u) levels superimposed with injected pulses



Training Simple RNN for Energy Reconstruction

Hyper-parameter optimization

* RNNs developed in Keras

® Optimization for different
parameters

Optimizer: minimization algorithm
Loss: minimization function
Epoch: number of iterations over
the dataset

Batch size: training samples per
optimization step

Choice of activation function for
Simple RNN and LSTM

Validation loss, RMSE [GeV]

SGD
SGD with momentum
RMSprop

Adam

11
Epoch

13




Optimizing Simple RNN for Energy Reconstruction

Simple RNN performance

® Qut-of-time pileup causes large drop in performance for OF
* RNNs with sufficient size and sequence length correct for out-of-time pileup

Events
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Optimizing Simple RNN and LSTM for Energy Reconstruction
Summarizing performance

® Optimization for Simple RNN and LSTM architectures

e Performance in o (E2* —

® Requires enough units and long sequence
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RNN Performance

Resolution as a function of gap to previous energy deposit in bunch crossings (BCs)
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Simple RNN Gap Performance

Simple RNN performance in low and high gap region

® Separation in overlapping and non-overlapping cases

® Qverall improvement with more units

® | onger sequence length improves performance in the case of overlapping pulses
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LSTM Gap Performance
LSTM performance in low and high gap region
® Separation in overlapping and non-overlapping cases

® Qverall improvement with more units

® | onger sequence length improves performance in the case of overlapping pulses
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Timing Reconstruction
RNNs predict time and energy

® Extending the Dense layer to include another output neuron for the timing
® The same RNN state is reconstructed as both the energy (E;,ed) and timing (T preq OF T)

RNN ) RNN "

T(t)



Timing Reconstruction

Dataset for timing predictions

® Changes in the time of energy deposit alters the pulse shape
® Dataset consist of uniform -8 ns to 8 ns shift
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Timing Predictions
Timing prediction performance

® RNNs outperform OF in timing reconstruction
® o(LSTM) =1.82ns, o(RNN) = 1.83 ns, o(OF) = 2.87 ns
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Timing Predictions
Timing and energy prediction performance
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Weighted Loss

RNNs predict time and energy
® Poor energy resolution can be mitigated by implementing a custom loss function with a

o (E2®d _ Elrve)(GeV]

parameter to prioritize energy resolution more

Loss function incorporates a weight factor to prioritize energy at the expense of timing
reconstruction performance: MSE(
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RNNs with Weighted Loss

RNNs predict time and energy

® RNNs with optimized loss outperform OF in both timing and energy resolution
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Resilience Against Instantaneous Luminosity
ATLAS luminosity across runs
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One entry per network

Resilience Against Instantaneous Luminosity

RNN performance over a range of luminosities

® Train 80 randomly initialized networks for (u) = 100, (x) = 140,
® Probe statistical uncertainty of network training

® The effect of (u) is smaller than the effect of initialization
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Resilience Against Instantaneous Luminosity

Best performing RNN networks over a range of luminosities
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4. Energy Reconstruction in the Full LAr Calorimeter



Changes in Detector Conditions

Cell clustering background

® Unfeasible to train 182k networks

® Differences of detector response in different
parts in the detector

® Leads to changes in pulse shapes

® Requires a way to identify detector cells that
could share the same RNN network

Cells in Layer 3
AbxAn = 0.0245%0.05

375 |"“ \-‘1 }-__
SMmyg - &
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. 1= 0,053, MM 25
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~—CellsInPS
AnxAg = 0.025x0.1

Square cellsin
Layer 2



Reconstruction for Full Detector

Unsupervised learning for calibration pulses

® Regular calibration process used to acquire
the pulse shape of each 182k detector cells

® These calibration pulses can be used by
unsupervised learning algorithms group cells
together based on their similarity

Normalized Amplitude
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t-SNE Dimensionality Reduction

Finding similarities in calibration pulses

100 [T T T T

® t-SNE unsupervised learning method used EMB Layer 3
for dimensionality reduction

® The method reduces the 768 samples of the
calibration to two dimensions
® Points in 2D attract or repel each other based
on their similarity in higher dimension
® Similar shapes are grouped together

® Color denotes i
® Acquired the expected grouping based on n

t-SNE dimension 2

t-SNE dimension 1



DBSCAN for Cluster Labeling

Automatically detect the amount of clusters

®* DBSCAN is used for identifying the clusters
® Based on their distance in the two
dimensional plane

® The number of clusters is automatically
detected

® Results to labeled clusters

t-SNE dimension 2
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Clustering Result
Pulse shapes in the clusters
® Pulse shapes in cluster ID color
® Similarly shaped pulses clustered together
® Calorimeter cells in n — ¢ plane shown in cluster colors
® Expected n dependence
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Pulse Clustering

Reconstruction across calorimeter cells in different clusters

T TTTTTTTT T T T
. 2 [ EMB Layer 3 .-:— Same cluster
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. . . 2000
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Reduction in the Amount of Networks
Clustering for EMB and EMEC

e Clustering was done for full electromagnetic calorimeter
® Yields a significant reduction in required amount of NNs

® |n total 121 networks needed for EMB and EMEC
® More clusters in EMEC due to large differences in geometry

Layer Barrel End-cap

0 7732 -9 1521 - 3

1 58172 — 2 | 28259 — 26
2 28893 — 6 | 23185 — 46
3 13682 — 11 | 10138 — 18
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Quantization of RNNs
Deploying NNs on FPGAs

Floating point operations on FPGAs consume
large amount of resources
Requires the usage of fixed-point operations
® Introduces quantization error
Optimizing the number of bits to reduce error
® Using 18 bit precision
® Quantization done after training
® Shows good agreement between the software
and firmware results
Resource usage can be reduces with lower
bitwidth

Normalized to unity

101

1072

107

L ------ 4-Conv CNN

AREUS Simulation
EMB Middle (n,¢) = (0.5125, 0.0125)

<p> = 140, E:’E” > 240 MeV

— Vanilla-RNN(sliding) £},
- LSTM(single) i

— — LSTM(sliding)
---- 3-Conv CNN

R

Be bl

01 -005 0 005
E.(firmware) - ET(software)

E,(software)




Quantization Aware Training

— T T,

Fixed-point math operations L e e
—=— PTQ (HLS)

~#— QAT (HLS)
- Software (Keras) 1
= OFMax

e Quantization Aware Training (QAT) uses
fixed-point precision during training

® Post-Training Quantization (PTQ) requires 14
bits to reach software precision

RMSE [GeV]

QAT reaches same precision with only 8 bits

® | ower resource usage per operation allows
the deployment of larger network

Agilex FPGAs have 9x9 DSP mode which can

be utilized only with QAT T E P R T BN PR
4 6 ) 10 12 14 16

Total bits




Resource efficient correction

Correct for past events by setting the initial state of RNN

® Long sequence length improves

performance

® Each sample adds another RNN cell

iteration

Er[GeV]

e Qut-of-time pileup corrected by a Dense

layer

® 25 past samples processed by the dense

T T
—— Signal (normalized)
—— True energy

20

layer 3
® Qutput of the dense is the initial state of 05
the RNN 100
) 0 5
AN
Model RNNsegb | RNNseq30 | Dense+RNN seq b
Multiplications 1376 8176 1776

pred
ET



Resource efficient correction

Performance of the new simple RNN architecture using 16 units

RNN seq 5

® 1sample before

deposit
RNN seq 30

® 26 samples before

deposit

Dense+RNN seq 5 =

® The new
architecture

QDense+QRNN seqg 5 B

¢ 9 bit QAT

Overlapping

RNN seq 5

RNN seq 30

Dense+RNN seq 5

QDense+QRNN seq 5

OFMax

AREUS EM-Middle |n[x@=0.5125x0.0125|
E*® 2 240 MeV, <> = 140, gap < 20

—+— Mean * StDev
—— Median + 98%

range

y
x

1

f ¥y
F x

I
-1

il ! ! ! l
-08 -06 -04 -02 0 0.2

Eﬁred _ E'T'“e[Ge\/]
Similar performance with reduced resource usage

RNN seq 5

RNN seq 30

Dense+RNN seq 5

QDense+QRNN seq 5

OFMax

Non-overlapping

AREUS EM-Middle |n[x@=0.5125x0.0125
Eﬁ“* > 240 MeV, <u> = 140, gap > 20
—+— Mean * StDev

—— Median + 98% range

L

¥
& 1

13
x

| . |
F x 1

I ! ! 1 [
-04 -03 -02 -01 0 01 02
pred truey
EPL . EMe[Gev]



Table of Contents

6. Conclusion



Conclusion

Energy reconstruction using recurrent neural networks

HL-LHC conditions require improved method for energy computation
Developed RNNs outperform OF in both energy and timing resolution

RNNs shown to be robust against changes in luminosity
Unsupervised learning used to reduce the required amount of NNs
® 4 orders of magnitude reduction in required networks
Optimized for deployment on FPGA
® Quantization Aware Training makes 9x9 bit DSP mode available
® Qut-of-time pileup corrections with Dense layer
Two papers published
® Artificial Neural Networks on FPGAs for Real-Time Energy Reconstruction of the ATLAS LAr Calorimeters
(https://doi.org/10.1007/s41781-021-00066-y)
® Firmware implementation of a recurrent neural network for the computation of the energy deposited in
the liquid argon calorimeter of the ATLAS experiment. ( arXiv:2302.07555)

Conference talk: VIl international conference on High Energy Physics in the LHC Era (HEP2023)



Future Prospects

Energy reconstruction using recurrent neural networks

Further tuning and improvement of the neural network
® Explore other network architectures (transformers)
Further optimization for FPGAs
® Pruning of RNN: removal of insignificant weights
Evaluate the improvement of RNNs on physics objects

® Photon/electron identification and energy resolution
® Trigger efficiency

Application of neural networks on real data

® Calibrate the network performance in real data
® Estimate the systematic uncertainty



Backup



RNNs for Energy Reconstruction
Single-cell

® Using LSTM to predict a continuous stream of digitized samples

® Use the LSTM cell to process all digitized samples in one continuous chain instead of a sliding window
® Full history of events available
® Possible only for LSTM

ET (l’l - 4) ET(H — 3) ET (n) ET(H + 1)

L o B

ADC(n) ADC(n+1) ADC(n+4) ADC(n+5)



Single-cell LSTM for Energy Reconstruction

Continuous stream

® \Well performing architecture

® However unfeasible

® Unable to implement to ATLAS simulation

software

® Unable to implement on FPGA

RNN (sliding)

LSTM (sliding)

LSTM (single-cell)

AREUS EM-Middle |n|x@=0.5125x0.0125
ET* 2 240 MeV, <p> = 140

—+— Mean * StDev
—»— Median + 98% range
‘ P
v |
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e

A 4

'
I
|
I
I
I
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'
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I
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Timing Reconstruction
RNNs predict time and energy

® Good timing reconstruction performance in comparison to OF
® Large improvement in lower energies

20000 20000
g g g
& g K3 3 &
g 1500 10 p 10 g 15000
= = =
| 10000 | | 10000
z . .
S 5000 10 = 10 S 5000
0 0
5000 10' 10 5000
10000 2k 10000 fg
E o o
7|SDDDO 1 2 3 5 10 10 -15000,

r
Efre [GeV]




Quantization Aware Training

Fixed-poing math operations

® Train neural networks with fixed-point
representation
® Simulated quantized representation in the
forward-pass
® Floating-point during weight adjustment

T
[ —— Quantized 4 bit, 1 int

[ —— Quantized 4 bit, 2 int

[ —— Straight-through estimator




Pruning of RNNs

Removing insignificant weights

® Pruning refers to the removal of insignificant weights
® Deployment on FPGAs gives the option to omit the weight multiplication if the weight is zero

® Comparison of different pruning percentages on different sized networks

® Larger network keeps higher performance with high pruning percentage
® Unpruned small network still performs better than pruned large network
® Unfeasible hardware implementation

T T
1 RNN original

3107 [T T T . _
- true €
28x10"  0.24GeV <Ef“* <5GeV 5 ) _ Ao
26x10”" 3] 1 RNN 80%
= o %
24x107" | —#— RNN 8 units 3 1 RNN 95%
-1 | —#= RNN 16 units i
2210 ' H
—m— RNN 32 units £ o ]
w107 F OFMax 5
2x10 2
1.8x107"
~ .
1610 © i
14x10
-1 L L L L I -3 | | L
12x10° 5 02 0.4 08 08 107 %0 05 o s 25

Pruning percentage

Absolute weight value

3x107
S 28x10°
(o) i
G 26x10
T 24x10"

rue

o5 22x107

2x10”"

gpred _

s 18x107"

of

16x10”"

14x107"

T T
0.24GeV <Efv¢ <5Gev % RNNB8units
~#— RNN 16 units

—m— RNN 32 units
----- OFMax

12x10”"

10' 10° 10°

Amount of non-zero weights




Clustered Performance

Performance in the full EMB layer

® Evaluating performance over all of
the clusters in the layer

® Train a network for each cluster by
using the pulse shape in the
middle of the cluster as the pulse
shape for the AREUS simulation

® Evaluate the network for 10

randomly sampled cells of every
cluster

Model Trained on cluster id

Mixed

126 152 194 274 134 457 157
+1 4.8 419 4:43 44 416 [
124,128 141,165 166,222 212,352 129,140 ORETY 146,163
126 130 137 179 128 306 462 137
+1 +2 3 436 #1422 +-28 [
125,127 127,132 132,142 145,259 126,130 275,349 PEVPEY 132, 140
139 138 135 136 136 167 216 238 276 135
+1 +1 +1 +3 #1  +10  +52 4019 4232 41
138,141 136,139 134,136 132,144 135,138 154,188 161,318 207,264 245,355 134,136
139 138 137 138 139 145 166 255 166 178 145
+4 1 +3 +4 +2 42 +-26 422 46 +13  +3
136,149 137,140 134,142 132,144 137,143 143,150 150,219 225,291 156,176 167,212 141,153
125 134 157 209
+1 3 416 +-47 +-44
123,128 131,141 137,183 152,298 511, 668
301 173 167 149 285 140 148 241 143 150 323
$-44  +-10  +-26 47 | 434  +-2 416 +-34  +-2 -8 | -2
220,393 160,188 144,220 141,162 231,351 138, 144 139,182 190,297 140,146 145,172 281,377
223 159 159 156 200 157 153 159 152 154 227
427 42 +5 2 +-19 -4 +-5 +-9 +1 +1 419
175,281 156,162 154,170 151,160 174,242 152,164 144,157 147,172 150,154 152,156 201,267
353 239 236 221 347 206 197 164 193 192
4-41 | +-12 433 4-13 | 4+:34  +-4 413 +-3 +-4 +-5
280,441 224,255 203,303 207,248 291,408 200,214 170,210 157,169 189,198 180,196
308 188 182 164 292 163 157 157 154 155 332
4-45 -9 423 +6  +:33 +6 +-5 +7 +1 +2 | 429
230,405 176,202 163,230 155,176 239,350 155,175 148,164 148,169 152,155 151,157 289,388
351 192 182 164 328 160 155 147 153 154 371
4:52 | +-12 431 +7 | 440  +-4 +-7 +-2 +2 +-2 | 433
255,462 176,210 154,246 155,177 264,408 155 169 142,162 143,150 151,156 150,157 321,435
125 131 145 169 122 271 328 478 350 125
+2 +2 46 +-23  +1 412 448 BEREIE 420 +2
122,129 128,135 137,154 145,215 120,123 257,294 260,418 [RECHCPAN 317, 377 122,127
148 159 162 166 153 174 178 182 178 181 156
+-1 41 +-2 +-3 +-2 +2 +-4 +2 +1 +3 +2
146,151 158,161 160,164 162,172 149,156 171,177 171,185 179,186 176,181 176,187 151,158
[ 1 2 3 6 7 8 9 10

a4 5
Prediction data cluster id
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