

Machine Learning on FPGAs for Real-Time Processing for the ATLAS Liquid Argon Calorimeter

Lauri Laatu supervised by Emmanuel Monnier and Georges Aad

03.10.2023

Content

- 1. Experimental Context
- 2. Network Architectures
- 3. Network Performance on a Single Calorimeter Cell
- 4. Energy Reconstruction in the Full LAr Calorimeter
- 5. Adapting RNNs for FPGA Deployment
- 6. Conclusion

The Standard Model of Particle Physics

The fundamental model of physics

- The Standard Model describes the most basic building blocks of the universe
- The Higgs Boson was found in LHC
 - No discoveries of fundamental particles since
- Current and future LHC prospects
 - Precision measurements and search of deviations from the Standard Model
 - Special focus on the Higgs sector
 - Search for Beyond Standard Model particles

The Standard Model of Particle Physics

The fundamental model of physics

Direct observation of resonances: fundamental way of finding new particles

- Eg. Higgs Boson discovery in $H \rightarrow \gamma \gamma$ channel
- Fundamental role of energy resolution of the Liquid Argon calorimeter

Discovery plot 4.7.2012

The Large Hadron Collider

The accelerator complex

- A 27 km circumference accelerator ring with two counter-rotating beams
- Up to 14 TeV collisions of bunches of 10¹¹ protons every 25 ns (40 MHz) at interaction points

ATLAS

The detector

- ATLAS detector is one of the general purpose detectors in the LHC
- Each subdetector is specialized in measuring different properties of particles

ATLAS The detector

- Tracking system
 - Measures the direction and momenta of charged particles
- Electromagnetic calorimeter
 - Measures the energy of electromagnetically interacting particles
- Hadronic calorimeter
 - Measures the energy of hadronic particles
- Muon system
 - Measures the momenta of muons

ATLAS Liquid Argon Calorimeter

Energy reconstruction in the LAr calorimeter

- The Liquid Argon Calorimeter (LAr) mainly measures the energy deposited by electromagnetically interacting particles
 - Consisting of \approx 182 000 calorimeter cells
- Passing particles ionize the material
 - Bipolar pulse shape with total length of up to 800 ns (32 BCs)
 - Pulse is sampled and digitized at 40MHz
- Energy reconstruction is done using the digitized samples from the pulse
 - Computed real-time and used in triggering decision

The Phase-II Upgrade of the LHC

Upgrade of the ATLAS experiment

- The High Luminosity LHC (HL-LHC) is an important milestone for particle physics
 - Increase the luminosity to study rare processes
 - High pileup: up to 200 p-p collisions per bunch crossing
- The detectors will be upgraded to cope with the high pileup at the HL-LHC
 - In particular the ATLAS calorimeter readout electronics will be completely replaced

Phase-II Upgrade of the Liquid Argon Calorimeter

LAr Electronics upgrade

- Increased luminosity requires
 - Higher granularity at trigger
 - Increased trigger rate
- Frontend electronics amplify, shape and digitize the LAr electrical signal at 40 MHz
- Backend processing board: LASP
 - 40 MHz energy computation at full granularity
 - Send data to trigger at 40 MHz
 - Readout at 1 MHz (trigger accept)
 - Designed at CPPM

LASP Board

LAr Electronics Upgrade

- LASP board contains two high-end FPGAs (Field Programmable Gate Arrays)
 - Only technology available to handle high throughput (1Tb/s per board)
- Able to use neural networks but with FPGA constraints
 - 384 LAr channels per FPGA: small NNs
 - 125 ns latency requirement at 40 MHz: fast NNs

FPGA Resources

Comparison of FPGAs

- Arria is used in Phase-I boards
- Stratix in the demonstrator board
- Agilex chosen for the production boards
- Important resources for NNs
 - Adaptive Logic Modules (ALMs) for additions

Resources

- Digital Signal Processor (DSPs) for multiplications
- Arria and Stratix allows two multiplications with a single DSP
- Agilex allows four multiplications per DSP

Energy Reconstruction

Energy reconstruction in the LAr calorimeter

- Current energy reconstruction uses the Optimal Filtering algorithm (OFMax)
- Energy reconstruction from amplitude
- Timing τ from pulse phase changes
 - Quality and bunch crossing identification
 - Searches of long-lived particles

$$E(t) = \sum_{i=1}^{5} a_i \cdot s_i$$

- *a_i* Coefficients for energy reconstruction
- s_i Sampled signal

$$\tau(t) = \frac{1}{E} \cdot \sum_{i=1}^{5} b_i \cdot s_i$$

- *b_i* Coefficients for timing
- s_i Sampled signal

OF Performance in Phase-II

Increasing pileup

- Reduced performance as average pileup $\langle \mu
 angle$ increases
- Large drop in performance in the case of overlapping pulses (low time gap)
- Requires a better energy reconstruction method: neural networks

Table of Contents

1. Experimental Context

2. Network Architectures

3. Network Performance on a Single Calorimeter Cell

4. Energy Reconstruction in the Full LAr Calorimeter

5. Adapting RNNs for FPGA Deployment

6. Conclusion

Neural Networks

The neuron as the building block

- Neuron is the building block in neural networks
- Activation: non-linear function allowing learning non-linear relationships in data

$$y = f_a(\sum_{i=1}^3 w_i \cdot x_i + b)$$

Neural Networks

Feed Forward Networks

- Neural networks consist of stacked layers of neurons
- Known as the Feed Forward Network or **Dense** network

RNN Architecture

Time series processing with Recurrent Neural Networks (RNNs)

- Recurrent Neural Networks (RNNs) are designed to process time series data
 - Natural choice for processing ADC sequence from the LAr detector
- The RNN cell combines new time input with past processed state
 - Information about the past encoded in the state
 - Suitable to correct pileup from past events

RNN Cell

RNN cell types

- Simple RNN is the smallest RNN structure
 - Fewer parameters, limited memory
 - Rectified Linear Unit (ReLU) activation
- Long Short-Term Memory (LSTM) network for efficiently handling past information
 - More parameters, gated structure improves memory

RNNs for Energy Reconstruction

Using sliding window RNN for energy reconstruction

- Full sequence split into overlapping subsequences with a sliding window
- One energy prediction per subsequence
 - 4 samples after the energy deposit
 - 1 before the deposit (in this example)
- Longer sequence adds samples in the past
 - Better correction of out-of-time pileup
- Single neuron reconstructs energy from the RNN state

Table of Contents

- 1. Experimental Context
- 2. Network Architectures
- 3. Network Performance on a Single Calorimeter Cell
- 4. Energy Reconstruction in the Full LAr Calorimeter
- 5. Adapting RNNs for FPGA Deployment
- 6. Conclusion

ATLAS Simulated Dataset

Simulation of a single calorimeter cell

- ATLAS Readout Simulator (AREUS) is used for continuous simulation of a single LAr cell
 - Minimum bias events at different $\langle \mu
 angle$ levels superimposed with injected pulses

Training Simple RNN for Energy Reconstruction

Hyper-parameter optimization

- RNNs developed in Keras
- Optimization for different parameters
 - Optimizer: minimization algorithm
 - Loss: minimization function
 - Epoch: number of iterations over the dataset
 - Batch size: training samples per optimization step
 - Choice of activation function for Simple RNN and LSTM

Optimizing Simple RNN for Energy Reconstruction

Simple RNN performance

- Out-of-time pileup causes large drop in performance for OF
- RNNs with sufficient size and sequence length correct for out-of-time pileup

Optimizing Simple RNN and LSTM for Energy Reconstruction

Summarizing performance

- Optimization for Simple RNN and LSTM architectures
- Performance in $\sigma(E_T^{pred} E_T^{true})$ as function of sequence length
- Requires enough units and long sequence

RNN Performance

Resolution as a function of gap to previous energy deposit in bunch crossings (BCs)

- Clear performance decrease with OFMax at low time gap
- All RNNs perform better with overlapping events
 - More past samples allows for better correction of overlapping events

Simple RNN

Simple RNN Gap Performance

Simple RNN performance in low and high gap region

- Separation in overlapping and non-overlapping cases
- Overall improvement with more units
- Longer sequence length improves performance in the case of overlapping pulses

Overlapping

Non-overlapping

LSTM Gap Performance

LSTM performance in low and high gap region

- Separation in overlapping and non-overlapping cases
- Overall improvement with more units
- Longer sequence length improves performance in the case of overlapping pulses

Overlapping

Non-overlapping

Timing Reconstruction

RNNs predict time and energy

- Extending the Dense layer to include another output neuron for the timing
- The same RNN state is reconstructed as both the energy (E_{pred}^{T}) and timing $(T_{pred} \text{ or } \tau)$

Timing Reconstruction

Dataset for timing predictions

- Changes in the time of energy deposit alters the pulse shape
- Dataset consist of uniform -8 ns to 8 ns shift

Timing Predictions

Timing prediction performance

- RNNs outperform OF in timing reconstruction
 - σ(LSTM) = 1.82 ns, σ(RNN) = 1.83 ns, σ(OF) = 2.87 ns

Timing Predictions

Timing and energy prediction performance

- Noticeable drop in energy reconstruction performance
- The training is prioritizing timing resolution at the expense of energy resolution

Weighted Loss

RNNs predict time and energy

- Poor energy resolution can be mitigated by implementing a custom loss function with a parameter to prioritize energy resolution more
- Loss function incorporates a weight factor to prioritize energy at the expense of timing reconstruction performance: $MSE(E_{pred}^{T} E_{true}^{T}) + w \cdot MSE(T_{pred} T_{true})$

RNNs with Weighted Loss

RNNs predict time and energy

• RNNs with optimized loss outperform OF in both timing and energy resolution

Resilience Against Instantaneous Luminosity

ATLAS luminosity across runs

- The pileup rate changes
 - Between runs
 - During a run
- RNNs need to be resilient against the changes in the luminosity

Mean Number of Interactions per Crossing

Resilience Against Instantaneous Luminosity

RNN performance over a range of luminosities

- Train 80 randomly initialized networks for $\langle \mu \rangle = 100$, $\langle \mu \rangle = 140$, $\langle \mu \rangle = 200$ and by mixing $\langle \mu \rangle$ data
 - Probe statistical uncertainty of network training
- The effect of $\langle \mu \rangle$ is smaller than the effect of initialization

Resilience Against Instantaneous Luminosity

Best performing RNN networks over a range of luminosities

- Best performing RNN for each $\langle \mu \rangle$ evaluated in comparison to OFMax
- The RNNs are robust and outperform OF with different instantaneous pileup

Table of Contents

- 1. Experimental Context
- 2. Network Architectures
- 3. Network Performance on a Single Calorimeter Cell
- 4. Energy Reconstruction in the Full LAr Calorimeter
- 5. Adapting RNNs for FPGA Deployment
- 6. Conclusion

Changes in Detector Conditions

Cell clustering background

- Unfeasible to train 182k networks
- Differences of detector response in different parts in the detector
 - Leads to changes in pulse shapes
- Requires a way to identify detector cells that could share the same RNN network

Reconstruction for Full Detector

Unsupervised learning for calibration pulses

- Regular calibration process used to acquire the pulse shape of each 182k detector cells
- These calibration pulses can be used by unsupervised learning algorithms group cells together based on their similarity

t-SNE Dimensionality Reduction

Finding similarities in calibration pulses

- t-SNE unsupervised learning method used for dimensionality reduction
- The method reduces the 768 samples of the calibration to two dimensions
 - Points in 2D attract or repel each other based on their similarity in higher dimension
- Similar shapes are grouped together
 - Color denotes η
 - Acquired the expected grouping based on η

DBSCAN for Cluster Labeling

Automatically detect the amount of clusters

- DBSCAN is used for identifying the clusters
 - Based on their distance in the two dimensional plane
- The number of clusters is automatically detected
- Results to labeled clusters

Clustering Result

Pulse shapes in the clusters

- Pulse shapes in cluster ID color
 - Similarly shaped pulses clustered together
- Calorimeter cells in $\eta \phi$ plane shown in cluster colors
 - Expected η dependence

Pulse Clustering

Reconstruction across calorimeter cells in different clusters

Evaluate inside same cluster

Train with one cell, test with another
 Same performance as with training and testing with the same cell

Large performance drop when training with one cluster and testing with another

Train with mixed data from all clusters, test with single cluster

• Mixing data across clusters slightly restores performance

Reduction in the Amount of Networks

Clustering for EMB and EMEC

- Clustering was done for full electromagnetic calorimeter
 - Yields a significant reduction in required amount of NNs
- In total 121 networks needed for EMB and EMEC
 - More clusters in EMEC due to large differences in geometry

Layer	Barrel	End-cap			
0	7732 → 9	1521 → 3			
1	58172 → 2	28259 → 26			
2	28893 → 6	23185 → 46			
3	13682 → 11	10138 → 18			

Table of Contents

- 1. Experimental Context
- 2. Network Architectures
- 3. Network Performance on a Single Calorimeter Cell
- 4. Energy Reconstruction in the Full LAr Calorimeter
- 5. Adapting RNNs for FPGA Deployment
- 6. Conclusion

Quantization of RNNs

Deploying NNs on FPGAs

- Floating point operations on FPGAs consume large amount of resources
- Requires the usage of fixed-point operations
 - Introduces quantization error
- Optimizing the number of bits to reduce error
 - Using 18 bit precision
 - Quantization done after training
 - Shows good agreement between the software and firmware results
- Resource usage can be reduces with lower bitwidth

Quantization Aware Training

Fixed-point math operations

- Quantization Aware Training (QAT) uses fixed-point precision during training
- Post-Training Quantization (PTQ) requires 14 bits to reach software precision
- QAT reaches same precision with only 8 bits
- Lower resource usage per operation allows the deployment of larger network
- Agilex FPGAs have 9x9 DSP mode which can be utilized only with QAT

Resource efficient correction

Correct for past events by setting the initial state of RNN

- Long sequence length improves performance
 - Each sample adds another RNN cell iteration
- Out-of-time pileup corrected by a Dense layer
 - 25 past samples processed by the dense layer
 - Output of the dense is the initial state of the RNN

Model	RNN seq 5	RNN seq 30	Dense+RNN seq 5		
Multiplications	1376	8176	1776		

Resource efficient correction

Performance of the new simple RNN architecture using 16 units

Overlapping

Non-overlapping

Similar performance with reduced resource usage

Table of Contents

- 1. Experimental Context
- 2. Network Architectures
- 3. Network Performance on a Single Calorimeter Cell
- 4. Energy Reconstruction in the Full LAr Calorimeter
- 5. Adapting RNNs for FPGA Deployment
- 6. Conclusion

Conclusion

Energy reconstruction using recurrent neural networks

- HL-LHC conditions require improved method for energy computation
- Developed RNNs outperform OF in both energy and timing resolution
- RNNs shown to be robust against changes in luminosity
- Unsupervised learning used to reduce the required amount of NNs
 - 4 orders of magnitude reduction in required networks
- Optimized for deployment on FPGA
 - Quantization Aware Training makes 9x9 bit DSP mode available
 - Out-of-time pileup corrections with Dense layer
- Two papers published
 - Artificial Neural Networks on FPGAs for Real-Time Energy Reconstruction of the ATLAS LAr Calorimeters (https://doi.org/10.1007/s41781-021-00066-y)
 - Firmware implementation of a recurrent neural network for the computation of the energy deposited in the liquid argon calorimeter of the ATLAS experiment. (arXiv:2302.07555)
- Conference talk: VIII international conference on High Energy Physics in the LHC Era (HEP2023)

Future Prospects

Energy reconstruction using recurrent neural networks

- Further tuning and improvement of the neural network
 - Explore other network architectures (transformers)
- Further optimization for FPGAs
 - Pruning of RNN: removal of insignificant weights
- Evaluate the improvement of RNNs on physics objects
 - Photon/electron identification and energy resolution
 - Trigger efficiency
- Application of neural networks on real data
 - Calibrate the network performance in real data
 - Estimate the systematic uncertainty

Backup

RNNs for Energy Reconstruction

Single-cell

- Using LSTM to predict a continuous stream of digitized samples
 - Use the LSTM cell to process all digitized samples in one continuous chain instead of a sliding window
 - Full history of events available
 - Possible only for LSTM

Single-cell LSTM for Energy Reconstruction

Continuous stream

- Well performing architecture
- However unfeasible
 - Unable to implement to ATLAS simulation software
 - Unable to implement on FPGA

Timing Reconstruction

RNNs predict time and energy

- Good timing reconstruction performance in comparison to OF
- Large improvement in lower energies

Quantization Aware Training

Fixed-poing math operations

- Train neural networks with fixed-point representation
 - Simulated quantized representation in the forward-pass
 - Floating-point during weight adjustment

Pruning of RNNs

Removing insignificant weights

- Pruning refers to the removal of insignificant weights
- Deployment on FPGAs gives the option to omit the weight multiplication if the weight is zero
- Comparison of different pruning percentages on different sized networks
 - Larger network keeps higher performance with high pruning percentage
 - Unpruned small network still performs better than pruned large network
 - Unfeasible hardware implementation

Clustered Performance

Performance in the full EMB layer

- Evaluating performance over all of the clusters in the layer
- Train a network for each cluster by using the pulse shape in the middle of the cluster as the pulse shape for the AREUS simulation
- Evaluate the network for 10 randomly sampled cells of every cluster

6 -	223	159	159	156	200	157	153	159	152	154	227
	+- 27	+- 2	+- 5	+- 2	+- 19	+- 4	+-5	+-9	+- 1	+-1	+-19
	175, 281	156, 162	154, 170	151, 160	174, 242	152, 164	144, 157	147, 172	150, 154	152, 156	201, 267
	353	239	236	221	347	206	197	164	193	192	402
	+- 41	+- 12	+- 33	+- 13	+- 34	+- 4	+-13	+-3	+- 4	+-5	+-29
	280, 441	224, 255	203, 303	207, 248	291, 408	200, 214	170, 210	157, 169	189, 198	180, 196	361, 461
7 - 8 -	+- 41 280, 441 308 +- 45 230, 405	+- 12 224, 255 188 +- 9 176, 202	+- 33 203, 303 182 +- 23 163, 230	+- 13 207, 248 164 +- 6 155, 176	+- 34 291, 408 292 +- 33 239, 359	+- 4 200, 214 163 +- 6 155, 175	+- 13 170, 210 157 +- 5 148, 164	+- 3 157, 169 157 +- 7 148, 169	+- 4 189, 198 154 +- 1 152, 155	+- 5 180, 196 155 +- 2 151, 157	+- 29 361, 461 332 +- 29 289, 388
9.	351	192	182	164	328	160	155	147	153	154	371
	+- 52	+- 12	+- 31	+- 7	+- 40	+- 4	+- 7	+- 2	+- 2	+- 2	+- 33
	255, 462	176, 210	154, 246	155, 177	264, 408	155, 169	142, 162	143, 150	151, 156	150, 157	321, 435
10 -	125	131	145	169	122	271	328	478	350	381	125
	+- 2	+- 2	+- 6	+- 23	+-1	+- 12	+- 48	+- 28	+- 20	+- 28	+- 2
	122, 129	128, 135	137, 154	145, 215	120, 123	257, 294	260, 418	438, 521	317, 377	346, 447	122, 127
4ixed -	148	159	162	166	153	174	178	182	178	181	156
	+- 1	+- 1	+-2	+- 3	+-2	+-2	+- 4	+-2	+- 1	+-3	+- 2
	146, 151	158, 161	160, 164	162, 172	149, 156	171, 177	171, 185	179, 186	176, 181	176, 187	151, 158
4ixed -	148	159	162	166	153	174	178	182	178	181	156
	+- 1	+- 1	+- 2	+- 3	+- 2	+- 2	+- 4	+- 2	+- 1	+- 3	+- 2
	146, 151	158, 161	160, 164	162, 172	149, 156	171, 177	171, 185	179, 186	176, 181	176, 187	151, 158

Model Trained on cluster id