

High energy physics searches in XENONnT and future LXe experiments

Cotutelle IMT Atlantique – The University of Melbourne

- Scientific supervisor. Sara DIGLIO
- Co-director: Elisabetta BARBERIO
- Thesis director: Dominique THERS

Xenon group, Subatech Marina Bazyk July 2023

XENON collaboration

12 countries27 institutions200+ scientists

XENONnT experiment

Laboratori Nazionali del Gran Sasso (LNGS), Italy 💍 2020 - present

Rock shielding [3600 m.w.e]

General view

XENONnT experiment

Laboratori Nazionali del Gran Sasso (LNGS), Italy 💍 2020 - present

Muon Veto	
Neutron Veto	ТРС
ТРС	1.5 m height 1.3 m diameter

Low **BG** & high target mass

Maintenance of the detector operating conditions in the 27/7 mode is carried out by people on-site and Shifters

[My shift 3-15 March 2022]

- Detector: dual-phase LXe TPC
 - [+ Muon Veto + Neutron Veto] [external BG]
- □ Mass: 5.9 t active LXe [3x XENON1t]
- **Exposure time:** 1.16 tonne-years ['so far', planned **20** t ×y]
- □ BG ER rate achieved: ~<u>16.1 events</u> / (t × year × keV)
- LXe purification [avoid impurities] [external BG]
- □ Radon distillation column [primary BG source] [internal BG]
- □ Rock shielding [3600 m.w.e: cosmic rays low energy BG] [external BG]
- □ Fast DAQ [>100x faster XENON1T]

XENONnT working groups

My contribution

7

ANALYSIS GROUPS:

NUCLEAR RECOIL rare nuclear recoil signals search Solar Boron-8 CEvNS Mirror DM Standard spin-**Other events** independent/dependent WIMP LOW ENERGY ELECTRONIC RECOIL electronic recoil signals in low energy region search Solar-pp neutrino Solar axions Other events Neutrino magnetic moment Bosonic dark matter

HIGH ENERGY ELECTRONIC RECOIL

electronic recoil signals in high energy region search

Xe-136 0v/2vbb
 Xe-134 0v/2vbb

Solar neutrino ER
Other events

S2-ONLY

Analysis on S2 signals

Dark PhotonsMigdal

Solar boosted DM
 DM-neutrino scattering

Analysis framework development

SIGNALS AND DETECTOR

ANALYSIS TOOLS

Signal, particle type, energy reconstruction

SIMULATIONS AND MODELING

Detector simulation, background estimation

Collaboration via (bi)-weekly meetings

My contribution

XENONnT calibration

Calibration sources: low energy

energy range: Weakly Interacting Massive Particles [WIMPs]

Calibration sources: high energy

Light and Charge Yields LY & CY

$$LY = \frac{S_1}{E} \text{ [PE/keV]}$$
$$CY = \frac{S_2}{E} \text{ [PE/keV]}$$

Importance of monitoring S1 and S2 signals:

□ stability of Light and Charge Yields over a long period of detector operation □ can change with time

depending on the operating conditions

estimation of systematic uncertainties on LY and CY [upcoming...]

Known sources with known energies are usually used to estimate LY and CY.

Group: SIGNALS AND DETECTOR Signal, particle type, energy reconstruction

Systematic uncertainties estimation

To correctly **account** for all the **uncertainties** on LY and CY measurements

To correctly **monitor** the LY and CY variations during data taking

Before this work:

Only statistical uncertainties have been accounted for

This work:

My contribution **1.** Systematic uncertainties study of LY & CY for isotopes of Xe, Co and K based on the fitting model

2. Fixed and Adaptive Kernel estimation systematic uncertainties approaches [KDE & AKDE] for Xe isotopes

1. Systematic uncertainties study of Light and Charge Yields of isotopes of Xe, Co and K based on Gaussian fit input parameters

Uncertainties estimation

$$δ_{LY(CY)} = \sqrt{\Sigma [\delta_{Parameter}(max)]^2}$$

RESULTS

Orders of magnitude of the systematic uncertainties:

□ for Xe: LY ~ 0,3% , CY ~ 1,3%

 \Box for Co and K: LY ~ 1% , CY ~ 2%

My contribution Results: internal note and code integrated to collaboration work

Internship co-supervision

"Measurements of Light and Charge Yields of ⁶⁰Co"

2. Systematic uncertainties study of Light and Charge Yields of Xe isotopes with KDE and AKDE approaches

Systematic uncertainties study of Light and Charge Yields of Xe isotopes with KDE and AKDE approach

Due to lack of statistics* (2000 events) ^{129m}Xe and ^{131m}Xe we try to artificially increase it by:

- 1. Building **PDF**
- 2. Producing 1000 Monte-Carlo data samples with the PDF obtained
- 3. Estimating **uncertainties** with the results obtained

For this algorithm use **KDE** or **AKDE**

* ^{131m}Xe and ^{129m}Xe events are mainly generated from the AmBe calibration period with neutron capture of Xe130 and Xe128 and quickly decay with half-life ~ 12 and ~9 days

Systematic uncertainties study of Light and Charge Yields of Xe isotopes with KDE and AKDE approach

Kernel Density Estimation = process of estimating an unknown probability density function using a kernel function.

While a histogram counts the number of data points in somewhat arbitrary regions, a **KDE** is a function defined as the sum of a kernel function on every data point.

Fixed Kernel Estimation

$$\widehat{f_h}(x) = \frac{1}{n} \sum_{i=1}^n K_h(x - x_i) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - x_i}{h}\right)$$

Here: K – kernel function (non-negative) function, h - bandwidth

Adaptive Kernel Estimation

The only difference in the adaptive kernel technique (**AKDE**) is that a bandwidth parameter is no longer a global quantity. In regions of high density we can accurately estimate the parent distribution with narrow kernels, while in regions of low density we require wide kernels to smooth out statistical fluctuations in our empirical probability density function.

To do so, we use:
$$h_i = \frac{h}{\sqrt{\widehat{f}_h(x_i)}}$$

Distributions of LY & CY

Once KDE and AKDE PDFs were built, 1000 MC data samples from these PDFs for each group of events were produced

Just started!

3. INFERENCE framework development in frame of High Energy ER Group

Just Stariedi

22

High-Energy Bootcamp @ Weizmann Institute of Science

□ Build the foundation of the High-Energy Analysis framework

- Signal Reconstruction
 MC Development
- Background Model

[May 2023]

Inference framework for High Energy region

Motivation:

- □ To draw conclusions and make predictions based on available evidence or observations
- To assess the validity of hypotheses and evaluate the support for proposed predictions

4. Future Liquid Xenon experiments

DARWIN & XLZD

Reminder: rare-events search

very low BG experiment high target mass

Subatech

S In progress...

- Detector: dual-phase LXe TPC
- □ Volume: 40 t 60t 80t of LXe!
- □ R&D is ongoing

WIMPs, but also...

- \Box low-energy solar neutrinos (v)
- axions- and axion-like particles
- \Box v-less 2 $\beta\beta$ decay of ¹³⁶Xe
- □ other rare nuclear processes
- □ coherent v-nucleus scattering
- detection of v from galactic supernovae, with sensitivity to all v flavors, etc.z

DARWIN & XLZD

R&D ongoing right now

- Design still to be fixed
- Simulations, sensitivity
- PMTs to be selected:
- **Full-Scale Demonstrators**
- **DAQ** challenges
- Cryogenics distillation, material coating, radiopurity assays, etc.

- Software development .
- Sensitivity studies for specific signal models
 - · WG 1 Science, Sims and Software: various topical areas (NR, ER, DBD) and tools
 - · WG 2 Detector Performance & Pathologies -Xe microphysics, anomalies, materials issues
- Studies on existing data (if we can find and . agreement how to share), how to include in simulations etc, results from test stands

 What R&D is needed and where can we contribute?

THE UNIVERSITY O **MELBOURNE**

- WG 3/4 Detector design, large scale testing, R&D planning
- · WG 5 Siting and underground requirements

Participation in monthly France-Australia meetings

[discuss joint contributions: future LXe experiments R&D and theory models]

My DOSSIBLE contribution PMTs testing in Melbourne

Sensitivity studies at high energies for different detector design

Summary

Done: Shift to XENONnT

^{83m}Kr cuts selection

Estimation of systematical uncertainty:

□ Statistical uncertainties are dominant when we do not have enough statistics

□ We can "increase" the statistics by using KDE approach

The order of magnitude of the **systematic uncertainty**:

□ for Xe: LY ~ 0,3% , CY ~ 1,3%

□ for Co and K: LY ~ 1% , CY ~ 2%

Ongoing: Inference framework development in High Energy:

Development of "Template builder" for future INFERENCE Anticipated: Contribution to Future Liquid Xenon experiments:

PMTs testing in Melbourne

Sensitivity studies at high energies for different detector design

Thanks for your attention.

Methodology

Idea: By changing initial parameters see the variation of LY and CY for Gaussian fit performed. The variation of parameters was chosen in such a way as to assure the ability to build Gaussian fit.

- □ Algorithms development from scratch
- □ High demand of computing recourses

Other parameters set to constant while v	varying one of them in 10 steps
--	---------------------------------

Parameter	Variation
Number of bins	50,(10 steps),95
x_{min}	<i>initial</i> - 50,(10 steps), <i>initial</i> + 50
x_{max}	<i>initial</i> - 50,(10 steps), <i>initial</i> + 50
y_{min}	initial - 5000,(10 steps),initial + 5000
y_{max}	initial - 5000,(10 steps),initial + 5000
μ_x	cS1mean - 5% ,(10 steps), $cS1mean + 4.5%$
μ_y	cS2mean - 5%,(10 steps) , $cS2mean + 5%$

Variation monitoring

> 100 plots produced and analyzed

dashed line represents the reference value

number indicated near the dot corresponds to a number of step of change

Observed: U the smallest (or the largest) number of step of change **does not always correspond** to the smallest (or the largest) value of LY or CY.

□ Hardly possible to determine which parameter **affects the results more**

Determine from the plots : I most significant variation only

□ variation of which parameter caused such change

Check of ⁶⁰Co and ⁴⁰K signals statistics

We took data for each run of ⁶⁰Co (1173keV), ⁶⁰Co (1332keV) For each set of events - build Gaussian Fit and

300000

KDE and AKDE comparison

Plots represent data with **KDE/AKDE** for the first group of 2000 events for ^{131m}Xe

ubatech

KDE and AKDE comparison

^{131m}Xe example: difference KDE/AKDE – in the zoomed version

WIMP Sensitivity

