Two-band superconductivity in electron-irradiated CeCu₂Si₂ and PrOs₄Sb₁₂ studied by local magnetization measurements

J. Juraszek¹, Yu.V. Sharlai^{1,2}, D.G. Franco³, Ch. Geibel³, M. Konczykowski⁴, and T. Cichorek¹

¹Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wrocław, Poland

² Institute for Low Temperature Physics and Engineering, Ukrainian Academy of Sciences, Kharkiv, Ukraine

³Max-Planck-Institute for Chemical Physics of Solids, Dresden, Germany

⁴Laboratoire des Solides Irradiés, CEA/DRF/IRAMIS, École Polytechnique, CNRS, Institut

Polytechnique de Paris, Palaiseau, France

Phases of matter are usually identified through spontaneous symmetry breaking, which sets in at a critical temperature T_c . This particular transition from the normal state into the ordered state builds up continuously and may be expressed quantitatively by introducing an order parameter that is finite for $T < T_c$ and zero for $T \ge T_c$. This concept also applies to superconductors (SCs), where a superconducting energy gap is an order parameter. In the case of conventional SCs, such as the elemental metals, the most symmetric *s*-wave spin-singlet state with zero angular momentum is constant in momentum space, and hence is insensitive to the presence of non-magnetic scattering. In unconventional SCs, however, both the phase and amplitude of the order parameter are expected to have a strong momentum dependence that gives rise to a sign-change of the superconducting gap function. Therefore, their superconducting properties are sensitive to the presence of lower critical field $H_{c1}(T)$ for samples with different electron irradiation doses, we were able to distinguish between possible gap structures in the canonical heavy-fermion compounds CeCu₂Si₂ and PrOs₄Sb₁₂.

The discovery of the first heavy-fermion superconductor CeCu₂Si₂ was a turning point in the history of superconductivity because it led to the birth of research on non-phonon-mediated Cooper pairing [1]. After four decades of research, the unexpected observations of the multiband superconductivity with absence of nodal quasiparticles have challenged the long-held dichotomy between simple *s*- and *d*-wave spin-singlet pairing states [2,3]. Utilizing a new innovative Hall micromagnetometry with a high spatial resolution, we measured the temperature dependence of the lower critical field of tetragonal CeCu₂Si₂ ($T_c \approx 0.58$ K). For the main crystallographic directions, we found a sharp anomaly at $\approx 0.41T_c$ followed by a moderate enhancement, indicative of two nearly decoupled bands. Moreover, the $H_{c1}(T)$ curves saturate in the limit T = 0 K, providing a further support for the absence of nodal quasiparticles. In addition, we studied the effect of electron irradiation on $H_{c1}(T)$. We observe irradiation to strongly suppress the enhancement of H_{c1} connected with the small gap and this enhancement is hardly visible for a dose as small as 0.8 C/cm². In striking contrast, the $H_{c1}(T)$ dependence above $\approx 0.4T_c$, which is well described by a single-band BCS-like relation, is robust against disorder. All these findings turn out to be more consistent with an s_{\pm} -wave scenario with weak interband coupling than a $d_{xy} + d_{x^2-y^2}$ model [4].

The heavy-fermion and multiband superconductor $PrOs_4Sb_{12}$ ($T_c \approx 1.85$ K) is a leading candidate to display chiral superconductivity, and hence to host Majorana fermions – exotic particles that could be used for quantum computing [5]. Based on measurements of $H_{c1}(T)$, we have proposed a multiband and multisymmetric scenario, in which a superconducting condensate is composed of a sign-changing smaller gap and a large isotropic *s*- wave gap [6]. To develop a detailed understanding of multicomponent superconductivity in cubic $PrOs_4Sb_{12}$, we have extended measurements of $H_{c1}(T)$ down to temperatures as low as 7 mK. We observed a sudden increase in $H_{c1}(T)$ deep in a superconducting state that is followed by a non-saturating and concave behavior of $H_{c1}(T)$ below about 0.45 K. These findings clearly point at a sign-changing symmetry of the smaller gap. Equally remarkable is a high sensitivity of this characteristic to electron irradiation. Indeed, even small concentration of artificial atomic defects (0.5 C/cm²) destroys a sign-changing order parameter, as evidenced from both a saturated dependence of $H_{c1}(T)$ and a strong suppression of its enhancement [7].

[1] F. Steglich et al., Superconductivity in the presence of strong Pauli paramagnetism: CeCu₂Si₂. Phys. Rev. Lett. 43, 1892 (1979).

[2] T. Yamashita *et al.*, Fully gapped superconductivity with no sign change in the prototypical heavy-fermion CeCu₂Si₂. *Sci. Adv.* 3, e1601667 (2017).

[3] G. Pang et al., Fully gapped d-wave superconductivity in CeCu₂Si₂. Proc. Natl. Acad. Sci. 115, 5343 (2018).

[4] J. Juraszek, Yu. V. Sharlai, D. G. Franco, C. Geibel, M. Konczykowsi, and T. Cichorek, Sign-changing isotropic superconductivity in the heavy-fermion metal CeCu₂Si₂ from lower critical field studies (in preparation).

[5] V. Kozii et al., Three-dimensional Majorana fermions in chiral superconductors. Sci. Adv. 2, e1601835 (2016).

[6] J. Juraszek, R. Wawryk, Z. Henkie, M. Konczykowski, and T. Cichorek, Symmetry of Order Parameters in Multiband

Superconductors LaRu₄As₁₂ and PrOs₄Sb₁₂ probed by local magnetization measurements. *Phys. Rev. Lett.* 124, 027001 (2020). [7] J. Juraszek, M. Konczykowski, and T. Cichorek, Destruction of a sign-changing order parameter by artificial atomic defects in

multiband superconductor PrOs₄Sb₁₂ (in preparation).