Plasma Accelerator Development Experimental Perspective at DESY

Rob Shalloo

Staff Scientist

DESY. Accelerator Division

With thanks to: Jens Osterhoff, Andreas Maier, Manuel Kirchen, Kristjan Põder & Maxence Thevenet for slide material

Photo: K. Sjobak

Research Focus At DESY "Our Strategy for the Future"

Photon Science "Decoding molecular structures"

Particle Physics "Understanding the origin of mass"

Astroparticle Physics

"Understanding cosmic evolution

Novel Accelerator Development

"Building the machines of the future"

Collaboration / Innovation / Inspiration

"We create places for exchange and ideas"

Plasma Acceleration at DESY is Growing A Hub of Activity for Laser- and Beam-Driven Plasma Accelerator Development

PETRA III

PETRA IV Plasma Injector

6 GeV LPA at 5+ Hz

KALDERA

1 kHz, 3 kW laser driver

FLASHFORWARD

Beam-driven plasma accelerators at ~1 GeV, MHz, 10 kW

LUX

1 Hz, 200 TW LPA undulator X-ray source

PLASMED X

3 Hz, 25 TW LPA Thomson source for medical imaging

European X-FEL

FLASHForward **Develop a Self-Consistent Plasma Accelerator Stage as an FEL Energy Booster**

High Beam Quality

Low energy spread Emittance preservation

High Efficiency

Transfer-efficiency Driver depletion

High Average Power

Bunch-train pattern High repetition rate

PLASMED X Compact High-Energy X-Ray Source for Advanced Medical Imaging

Compact Source

All-optical design 10-TW scale driver

Tuneable Narrow Bandwidth

Active Plasma Lens Tailoring Bandwidth stabilisation Continuous tuneability

Application

X-Ray Fluorescence Imaging of Gold nanoparticles

LUX Merging Plasma-Acceleration with Modern Accelerator Technology

Robust & Reliable Accelerator

Driven by Angus laser system 300 MeV @ 1 Hz over 24h < 1% energy spread demonstrated

Advanced Plasma Source

Gas density and composition tailoring Downramp-assisted Ionisation injection Optimal beam loading

Machine-Learning-Driven

Bayesian Optimisation Predictive modelling

KALDERA DESYs New Flagship Laser and Next-Generation Laser-Plasma Accelerators

Next-Generation 100 TW System

3J in 30 fs @ up to 1 kHz Active stabilization techniques Improved stability and performance

High-Average Power Electrons

High-average power plasma source < 1% energy spread & energy stability Increased energy via guiding

Unprecendented Stability

Laser-to-electron feedback control Autonomous tuning with ML Long-term operation

PETRA-IV Plasma Injector Efficient 6 GeV LPA-based injection system for PETRA-IV

Laser Upgrade

Plasma Source Development

Energy Compression Beamline

Reduce energy post-acceleration

DESY. Plasma Accelerator Roadmap Plasma-based particle accelerators for scientific and societal applications

Plasma Booster at X-FEL

Recuperate energy loss in CW mode Booster for higher energy photons

All-In-One Plasma Stage

High Efficiency High beam quality High average power

High-Power KALDERA

Multi-kW Laser Feedback Control Long-term Stability

10 kW Avg. Power

Pulsed MHz operation

Energy Compression

Post LPA beamline Energy compression Increased stability

LPA Applications

Medical Industrial

DESY. | **Rob Shalloo** | DMLab Plasma Acceleration Meeting, Paris | July 26th, 2023

Moon Shot PETRA-IV Plasma Injector Fill/Top Up PETRA-IV with LPA Petawatt upgrade to KALDERA

Mars Shot > 10 GeV LPA

Building block for collider Nonlinear QED Hard X-Ray FEL

9

Common Ground: Opportunities for Collaboration Experimental Perspective

Advanced Laser Diagnostics Measurement of spatiotemporal couplings. On-shot and dedicated diagnosis

Neutral Gas Source Tailoring Towards developing robust and tuneable plasma sources

Beam Extraction and Manipulation Post-accelerator Beamline components: Active plasma lenses / plasma-based laser beam dumps

Control and Stabilisation Techniques Advanced experimental control, opitimization and active stabilization

Advanced Laser Diagnostics Precision measurements of laser pulse spatio-temporal couplings

Spatio-temporal couplings not only lower peak intensity but can significantly impact the generated electron beams ^[1,2]

Can be introduced through misalignments, chromatic elements or through heating of components at higher average powers ^[3]

Characterisation is Key

Identification of spatiotemporal couplings can lead to use/mitigation

Continuous Monitoring

Single-shot & on-shot techniques will be essential moving forward

Closing the Loop

High-fidelity measurements and incorporation into simulations ^[4] will improve accuracy and provide further insight

[1] M. Thévenet et al., *Phys. Rev. Accel. Beams* 22, 071301 (2019)
[2] D. E. Mittelberger et al., *Phys. Rev. E* 100, 063208 (2019)
[3] V. Leroux, T. Eichner & A. R. Maier, *Optics Express* 28, 8257 (2020)
[4] <u>https://github.com/LASY-org/lasy</u>

Page 11

Neutral Gas Source Tailoring High-Fidelity Neutral Gas Sources with Integrated Controls and Diagnostics

The plasma source, composition and density profile is of vital importance to controlling the accelerated electron beams.

Tailoring of the plasma source is critical to both controlled injection and guiding

Tuneability should be prioritised

Density, ramps, plasma composition, segmenting,

Gas Flow Management

Differential pumping for reduced load on pumps, continuous flow operation

Simulations & Diagnostics

Accurate simulations of gas sources benchmarked by measurements

^[1] M. Kirchen et al., *Phys. Rev. Lett.* **126**, 174801 (2021) ^[2] L. T. Dickson et al., *Phys. Rev. Accel. Beams* **25**, 101301 (2022)

Beam Extraction and Manipulation Development of key compose

Careful extraction of both the laser and electrons are important for machine safety and for delivering high-quality beams for applications

Plasma accelerated electron beams offer a unique challenge here!

Plasma-Based Accelerator Optics

Continued development of plasma lenses, dechirpers etc.

Extraction of Electron Beam

Capture of the electron beam while mitigating emittance growth

Extraction of Laser Pulse

At kW level, the laser must be appropriately extracted/dumped

^[1] J. van Tilborg et al., *Phys. Rev. Lett.* **115**, 184802 (2015) ^[2] C. A. Lindstrøm et al., *Phys. Rev. Lett.* **121**, 194801 (2019)

Control and Stabilization Techniques Advanced Experimental Control, Optimization and Stabilization

Control and optimization of accelerated electron beams is difficult due to coupling between input parameters and the dynamic evolution of the accelerating structure.

Machine learning techniques such as Bayesian Optimisation have demonstrated their ability to autonomously optimise the generated electron and x-ray beams from LPAs.

Improved Algorithms

Better able to cope with experimental noise

Focus on Stability

Optimise for stable operation^[2], not just best beams.

Intelligent Operation

Monitor 'health' of accelerator and identify sources of damage before they propagate

^[1] R. J. Shalloo et al., *Nat. Comms.* **11**, 6355 (2020) ^[2] S. Jalas et al., *Phys. Rev. Lett.* **126**, 104801 (2021)

Summary

Plasma-based particle accelerators for scientific and societal applications

- DESY is committed to advancing plasma as a key future accelerator technology
- A vibrant research community exists at DESY with wide ranging expertise and focus
- Our research is supported by state of the art facilities
- Several areas of potential overlap proposed

Advanced Laser Diagnostics

Measurement of spatiotemporal couplings. On-shot and dedicated diagnosis

Neutral Gas Source Tailoring

Towards developing robust plasma sources capable of supporting kHz LPA operation

Beam Extraction and Manipulation

Post-accelerator Beamline components: Active plasma lenses / plasma-based laser beam dumps

Control and Stabilization Techniques

Advanced experimental control, opitimization and active stabilization

Thanks for your attention

