

Glimpse into EIC Exclusive Nuclear Structure

Rachel Montgomery (UoG) on behalf of many:

ePIC Collaboration

Exclusive, Diffractive, Tagging Working Group 12/10/23

- World's first polarised electron-proton/light ion and electron-nucleus collider
- To be built at BNL on RHIC complex
- Partnership between BNL and JLab
- Only new collider in the next decade
- \mathbf{M} High-luminosity: 10³³ 10³⁴ cm⁻²s⁻¹; 10 100 fb⁻¹/year; factor 100 - 1000 x HERA
- High polarised beams: 70%
- Large and variable centre of mass energy:
 - 29 < E_{CM} < 141 GeV
- Range of ions: protons, light nuclei, up to uranium
- **Marge** detector acceptance

Exploring the "Glue that Binds Us All"

- Science case documented elsewhere
- 2018 NAS report: EIC can uniquely address 3 profound questions about nucleons and how they are assembled:
 - How does the mass of the nucleon arise?
 - How does the spin of the nucleon arise?
 - What are the emergent properties of dense system of gluons?
- EIC ideal to study predicted saturation
- Plus more topics...

See e.g.: arXiv:1212.1701 [nucl-ex]; http://nap.edu/25171; arXiv:1708.01527v3 [nucl-ex]; arXiv:2103.05419v2 [physics.ins-det])

Several Final States

Neutral current inclusive

Charged current inclusive

- Complete control of kinematics event by event
- Complimentary to e+e-, pp/pA/AA (test eg universality)
- Exclusive
 - Multi-particle final states measure particles with high precision
 - Multi-dimensional binning (e.g. x, Q², t, φ) high luminosity
 - Good acceptances (maps to reconstructed kinematic) reach), very reliant on forward acceptance ...
 - Detectors resolutions and PID for background rejection

Crossing angle 25mrad

Excellent acceptance for exclusive reactions Broad range of exclusive final states rely on combinations of all Far Backward, Central **Detector and - critically - Far Forward (diffraction, tagging, nuclear breakup)**

IR Layout

electron-proton/ion collider (ePIC) experiment current design

Hermetic central detector: $0^{\circ} \le \phi \le 360^{\circ}$; $-4 \le \eta \le 4$

$$\eta = -\ln \tan(\theta/2)$$

electron-proton/ion collider (ePIC) experiment current design

Hermetic central detector: $0^{\circ} \le \phi \le 360^{\circ}$; $-4 \le \eta \le 4$

$$\eta = -\ln \tan(\theta/2)$$

E/M Calorimetry

- Imaging EMCal (barrel)
- W-powder / SciFi (forward)
- PbWO₄ crystals (backward) •

Hadronic Calorimetry

- FeSc from sPHENIX (barrel)
- Steel/Scint W/Scint (backward/forward)

Particle Identification

- High performance DIRC (barrel)
- Dual radiator (aerogel+gas) RICH (forward)
- Proximity focussing RICH (aerogel) (backward)
- TOF (AC-LGAD) (barrel and forward)

Solenoid

• 1.7T

Tracking

- Si MAPS (vertex, barrel, forward and backward disks)
- MPGD (µRWELL; micromegas) (barrel, forward and backward disks)

DAQ

Streaming/triggerless, inclusion of AI

Detector	Acceptance	
Zero-degree calorimeter (ZDC)	θ < 5.5 mrad (η > 6)	
Roman pots (RP) (2 stations)	0.0 < θ < 5.0 mrad (η > 6	
Off-Momentum Detectors (OMD) (2 stations)	0.0 < θ < 5.0 mrad (η > 6	
B0	5.5 < θ < 20.0 mrad (4.6 < η	

Far Forward

- Integration with accelerator
- Tagging at very small scattering angles η>4.5 !
- charged hadrons (protons, π) or neutrals (neutrons, γ), nuclei with different magnetic rigidity from beam
- Variety of final states
- Several ion species
- Wide range of beam/particle energies
- Essential for exclusive physics program
 - e.g. tagging; nuclear breakup/incoherent vetoing; t reconstruction...
 - e.g. deeply virtual Compton scattering $(ep \rightarrow e'p'\gamma)$, p' in B0 for low energy setting, RP for high setting

Far Backward

- Complementary luminosity monitors
- Direct photon detector
 - Calorimetry Bremsstrahlung γ
 - Synchrotron radiation
- Pair spectrometer
 - Convert Bremsstrahlung γ to e⁺e⁻
 - No synchrotron radiation
- Absolute and relative luminosity physics normalisations
 - Absolute $\delta L/L < ~1\%$
 - Relative up to 10⁻⁴ 10⁻⁵
- Low Q2 electron tagging
 - Verify luminosity measurements
 - Physics: extends kinematic range for electrons, or quasi real photons
 - e.g. studied in exclusive program for XYZ spectroscopy

Exclusive Activities - Just Some Examples

- QCD at extreme parton densities saturation
- Nucleon/Nuclear femtography: imaging of partons
- spin (orbital angular momentum contribution), mechanical properties of nucleon (pressure, shear forces)
- Hard exclusive reactions: Generalised Parton Distributions (GPD) nucleon/nuclear tomography, nucleon • Diffractive meson production: saturation probe in eA, gluon distributions, at threshold production sensitive to mass generation
- Sullivan process: scattering from meson cloud, meson form factors and structure functions meson structure and nucleon mass enigma
- Spectroscopy: structure of nucleons, search for exotics

Example hard exclusive processes

Not exhaustive!

Exclusive Activities - Just Some Examples

Numerous studies on-going, planned, still expanding/ evolving

Only some examples here

• Example recent activities for EIC detector 1 proposals and ePIC (still more to be studied):

DVCS in ep	u-channel VCS	J/Psi in eA	Pion structure functions
TCS in ep	u-channel: ω, ρ in ep	Phi in eA	Pion form factors
DVCS in eHe-4	J/Psi in ep	X,Y $\Psi(2S)$ in ep $\rightarrow J/\Psi\pi^+\pi^-p$	Pion DVCS via Sullivan

Example hard exclusive processes

Now a few examples...

Tomography

longitudinal momentum and transverse position f(x,b_T)

Exclusive Processes

Our goal: understand distributions of partons inside hadrons - how they move, how they are located

non-perturbative

• High Q^2 , low t \rightarrow clean access to four parton helicity-conserving chiral-even GPDs:

$$E^q, \tilde{E}^q, H^q, \tilde{H}^q(x, \xi, t)$$

• Access to: transverse spatial positions in longitudinal momentum space; pressure distributions (indirectly); orbital angular momentum

arXiv:1212.1701 [nucl-ex] $\gamma^* + p \rightarrow \gamma + p$

Tomography at EIC

At fixed Q2, x and $\mathcal{E}=0$, slope of cross section related to transverse spatial distributions of quarks inside nucleon

Offers access to gluon spatial distributions at different x-bins

arXiv:2208.14575v2 [physics.ins-det] and I. Korover (MIT)

DVCS ep \rightarrow e'p' γ :

- $(\pi^0 \rightarrow \gamma \gamma)$

DVCS at EIC

arXiv:2208.14575v2 [physics.ins-det] and I. Korover

• e' in central detector, γ in central detector EMCals • p' tagged in far forward

 Multidimensional binning over large t range • Excellent proton tagging in far forward region • Real photon reconstruction allows to separate main background

Program extends to eA...

Handbag approximation to pure coherent DVCS off 4He

S. Fucini et al., arXiv:1910.07458 [nucl-th]

DVCS at **EIC**

DVCS eA:

- Map GPDs and partonic structure of
 - whole nucleus (coherent)
 - bound nucleons (incoherent)
- EMC effect
- GPD flavour decomposition
 - e.g. D₂ for neutron GPD by tagging spectator p in far forward (almost 100%) acceptance expected from YR studies)
- e.g. ⁴He @ JLab CLAS \rightarrow BSA for coherent vs incoherent
 - PRL 119 202004 (2017); PRL 123 (2019) no.3 032502
- spin0 nucleus: parameterisation of coherent amplitude in terms of only one chiral even GPD

Factorization

 $= p + \Delta$

Coherent DVCS on 4He at EIC

-50 -100 -150 -300 -250 -200 -150 -100 -50 O B0TrackerHits.position.x

50

- Coherent DVCS $e^4He \rightarrow e'\gamma^4He'$
- Using Topeg generator (R. Dupré et al)
 - <u>https://gitlab.in2p3.fr/dupre/nopeg</u>
- e' and γ in central detector
- He' far forward (B0 and RP)
 - drives acceptance/statistics
- |t| reconstructed using He' optimal
- Allows reaches to low |t|
- Studies with ePIC continue
 - e.g. optimisation of FF region

Diffractive VM Production in eA

- Key EIC measurements: $e + A \rightarrow e' + A' + VM$
- Cross section sensitive to gluon density ullet
 - Gluon spatial distributions within nuclei
 - Low-x structure of nucleus, probe of gluon saturation (with Q²)
- Coherent sensitive to average nuclear geometry
- 1st minima \rightarrow info on nuclear parton density
- EIC: range of mesons, several ions, wide range Q²
 - e.g. J/ Ψ , ϕ , ρ , ω , Υ under study
- |t| resolution crucial for pattern very challenging
 - How pronounced will pattern be?
 - How to remove incoherent?
- VM escapes down beam pipe
 - A' reconstructed from decay products and exclusive kinematics
 - Need high resolution for e' and VM decay
 - Several studies ongoing into what extent pattern can be resolved

Coherent Diffractive φ Production in eAu

• Coherent $e + Au \rightarrow e' + Au + \phi \rightarrow e' + K^+K^-$

e' central detector, K+K- (very soft) central detector, Au' escapes Detector challenge: reconstruct |t|

Exclusivity corrected -t method (p_{A',corr} constrained by exclusive reaction)

• (see EIC YR arXiv:2103.05419v2 [physics.ins-det])

insensitive to beam effects (momentum/angular spread)

Optimised reconstruction event-by-event \rightarrow pattern starts to resolve

• Improvements expected as ePIC detector and software advances

Other potential improvements - Bayesian unfolding (see P. Steinberg BNL ECCE proposal work), low Q² tagging...

Coherent Studies with Q²

Plots and on-going study Ben-Gurion University (Thanks M. Pitt, Z. Citron, E. Mautner)

- J/Ψ Pb shown as example
- Adding low Q2 tagger increases acceptance by factor 5
- Electron resolutions better with low Q² reconstruction than central detector
 - start to see 1st dip
- Work in progress (e.g. t-reconstruction next)
- Other things to consider: background eg incoherent, synchrotron radiation

• Different ranges of Q² for VM production correlated to electron rapidity $\eta_{e'}$ • ¹⁶O, ⁶³Cu, ⁹⁰Zr, ²⁰⁸Pb, several energies, and several mesons ρ , ω , Y, J/ Ψ , ϕ

- (b) Veto.2: veto.1 and no neutron in ZDC.
- (c) Veto.3: veto.2 and no proton in RP.

- in ZDC.

(a) Veto.1: no activity other than e^- and J/ψ in the main detector ($|\eta| < 4.0$ and $p_T > 100 \text{ MeV}/c$). (d) Veto.4: veto.3 and no proton in OMDs. (e) Veto.5: veto.4 and no proton in B0. (f) Veto.6: veto.5 and no photon in B0. (g) Veto.7: veto.6 and no photon with E > 50 MeV

- Interesting in its own right (partonic fluctuations)
- Biggest background for coherent
 - except small |t|
- Event by event tagging in far forward EIC region to veto incoherent
 - B0, RP, ZDC, OMD
 - How much is needed?
 - Challenges will likely exist due to eg pileup • and sometimes missing products of nuclear excitation
 - ePIC studies with most up-to-date FF geometries/detectors on-going, e.g.:
 - veto incoherent deuteron breakup for light ion coherent VM with Beagle
 - Incoherent in heavier nuclei
 - Photons/nuclear de-excitation in B0 $(e + A \rightarrow e' + A' + VM + \gamma)$

B. Schmookler et al. (CLAS collaboration), Nature 566, 354 (2019)

B. Schmookler et al. (CLAS collaboration), Nature 566, 354 (2019)

Thanks F. Hauenstein (JLab) and A. Jentsch (BNL) for SRC input

- EMC effect
- Quasielastic knock-out experiments with tagging at JLab imply SRC can shed light on EMC effect
- SRC:
 - Can be measured in (e,e'pN)
 - Nucleons pair close together in nucleus (NN)
 - Higher relative and lower centre of mass momentum compared to Fermi momentum
 - np-dominance
- EIC:
 - Range of A targets
 - New channels
 - Larger recoil momentum acceptance
 - Higher and wide range in Q²
 - Excellent tagging in far forward for spectators and nuclei

SRC Opportunities Via Tagging

Quasielastic

F. Hauenstein. et al., PRC 105, 034001 (2022)

Recoil Momentum Distribution PIRF

Incoherent Diffractive J/psi

Z. Tu, A. Jentsch et al., PLB 811, 135877 (2020)

n.b. Studies on this page for EIC yellow report (not ePIC/ATHENA/ECCE)

- Quasi-elastic scattering on nuclear targets
- Central detector e'; far forward for nuclear remnants, protons and neutrons
- Shown: acceptances for tagged recoil nucleons in QE SRC breakup in eC
 - C(e,epp)X, C(e,enn)X, C(e,enp)X, and C(e,epn)X
- Acceptance over full momentum range
- Preference for 10 GeV x 110 GeV
- Deuterium was also studied d (e, e N N)
- J/Ψ can shed light of role of gluons in SRC
- $e+d \rightarrow e'+J/\Psi+p'+n'$
- Tag active and spectator nucleons in far forward to control nuclear configuration
- Spectator 3-momenta shown wide range, SRC region (>300MeV/c) accessible
- Work continues in ePIC on this

- EIC will be a unique opportunity to probe nucleon/nuclear structure in unexplored regimes using ep/eA
- Complimentary to e+e-, pp/pA/AA needed for fuller QCD understanding
- Numerous exciting exclusive measurements will shed light on several topics
 - in particular nucleon and nuclear tomography and gluon saturation
- Several studies on-going, and more to be developed (everyone welcome to join us in these efforts)
- Some examples were highlighted
 - DVCS in nuclei
 - Diffractive exclusive VM production
 - Tagging for SRC opportunities
- These were just some glimpses, not an exhaustive summary
- (Many more potential topics, e.g. nuclear deformations/nuclear structure...)

Method L from EIC Yellow Report

- Method Exact (E):
- Method Approximate (A) (UPCs)
- Method with exclusivity corrected (

$$-t = -(p_{e}-p_{e'}-p_{VM})^{2} = -(p_{A'}-p_{A})^{2}$$

$$-t = (p_{T,e'}+p_{T,VM})^{2}$$

(L):
$$-t = -(p_{A',corr}-p_{A})^{2},$$

where $p_{A',corr}$ is constrained by exclusive reaction.

