

universite

PARIS-SACLAY

ALERT and Tagged measurements at JLab

Raphaël Dupré

Univ. Paris-Saclay

erc

European Research Council Established by the European Commission

Tagging at JLab and beyond

Deuterium (polarized or not)

- Study pion and kaon content (TDIS @ JLab)
- Study the unpolarized neutron (Bonus @ JLab)
- Study nuclear effects and SRC (BAND @ JLab)

Helium-4

- Study bound nucleons (ALERT @ JLab)
- Study of EMC and SRC (ALERT @ JLab)

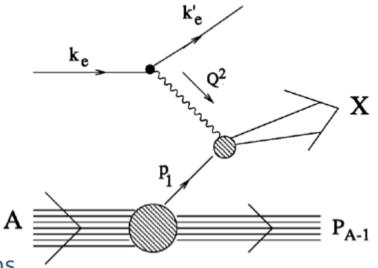
Heavy targets

- Centrality tagging, SRCs...

Important part of the EIC program !

- Based on very little actual experience

More About Tagging

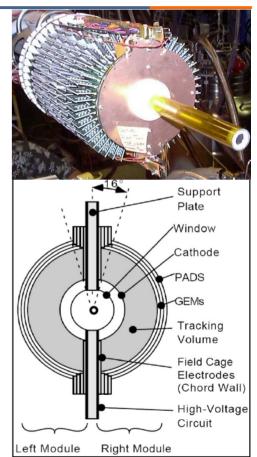

Why are the tagged processes special?

- They are semi-inclusive hard processes (>GeV scale)
- In which we detect nuclear fragments (MeV scale)
 - Selecting the optimal kinematics to isolate our process
- They give unique information on the state of the nucleus right at the hard interaction

What do we use it for ?

October 12, 2023

- Also to avoid nuclear effects and get quasi-free neutrons
 - We want to tag a backward proton at the lowest possible energy
- Select special configuration of the nucleus
- Can be very useful to understand nuclear effects
 - Highest possible energy if you want to look at SRCs

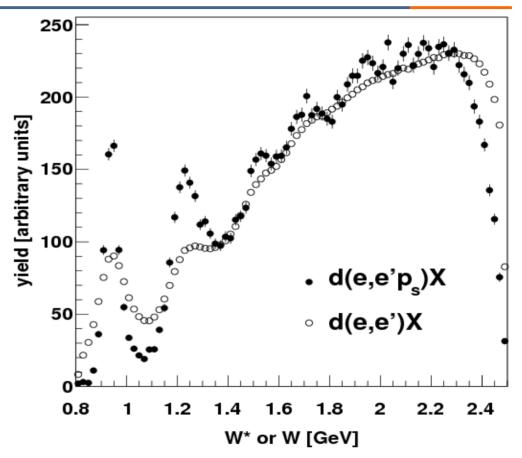

The Original Bonus Experiment

At JLab with the CLAS spectrometer

- Electron beam at 5.3 GeV and a large acceptance spectrometer
 - But no way to measure protons below 200 MeV/c

The BONUS detector

- A small radial TPC placed right around a gaseous deuterium target
- All materials kept to a minimum
- Capable to detect as low as 60 MeV/c protons



Tagging Nuclear Reactions

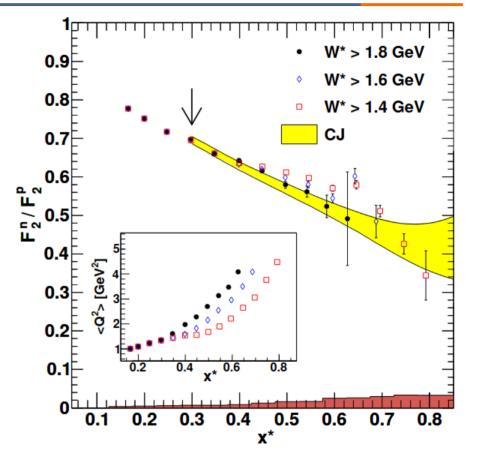
Does tagging actually works ?

- To control final state interaction
 - To validate our calculations
- Then to select ideal kinematics W. Cosyn and M. Sargsian, Phys. Rev. C84 (2011) 014601
- To control the initial state
 - Access to the nucleon's kinematic
 - Access to the nucleon's virtuality
 - And correct for it !

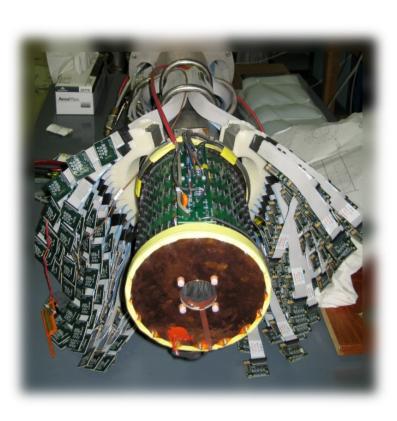
Yes, impulse approximation is working here !

Bonus Results

Measure of the neutron F2


- As a fonction of x*
 - Corrected for the proton kinematic
- With pretty loose W* cut
 - Due to a lack of data

N. Baillie et al. CLAS Coll. Phys.Rev.Lett. 108 (2012) 142001


Contribution to PDF fits

- Unique data for PDF fits
 - Free of nuclear effects

A. Accardi et al. Phys.Rev.D 93 (2016) 11, 114017

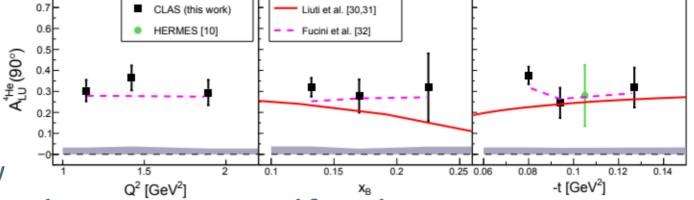
A New RTPC for CLAS

October 12, 2023

RTPC can also be used for light nuclei

- They usually do not event make it out of the target... How to handle that ?
- Use a light nuclei : Helium-4 for instance
- Use a light target : a straw
 - Filled at 5 Atm with 50 µm thick walls
- Get very close to it : Radial TPC
 - 3 cm away from the target

Another CLAS +RTPC experiment ran in 2009

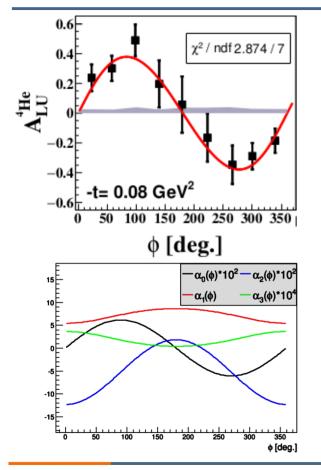

 Most of the scientific program was outside the topics of this workshop, but...

The Coherent Helium DVCS

Coherent DVCS on helium

- Fully exclusive
- We observed large beam spin asymmetry

About twice the one on the proton, as expected from theory


Interpretation of the results

- This strong signal shows we fully isolated coherent DVCS
- The amount of data is too little for advanced interpretation
- But enough to check if we can extract the CFF !

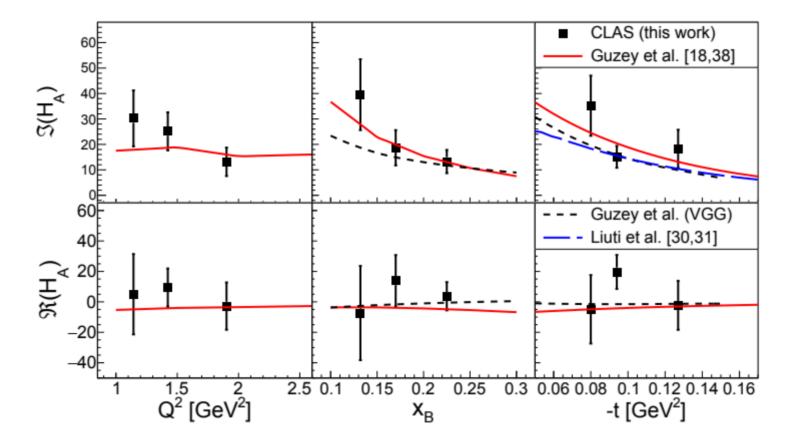
M. Hattawy et al. (CLAS Coll.) Phys. Rev. Lett., 119(20):202004, 2017.

Nuclear CFF Extraction

October 12, 2023

The Helium CFF extraction

- Simplified by the spin-0 (1 GPD/CFF) This is done using the different contributions in phi


- They are calculable within pQCD

 $A_{LU}(\phi) = \frac{\alpha_0(\phi) \Im m(\mathcal{H}_A)}{\alpha_1(\phi) + \alpha_2(\phi) \Re e(\mathcal{H}_A) + \alpha_3(\phi) \left(\Re e(\mathcal{H}_A)^2 + \Im m(\mathcal{H}_A)^2\right)}$

- The fit converges immediately

M. Hattawy et al. (CLAS Coll.) Phys. Rev. Lett., 119(20):202004, 2017.

(First) Model independent CFF extraction

Incoherent Helium DVCS

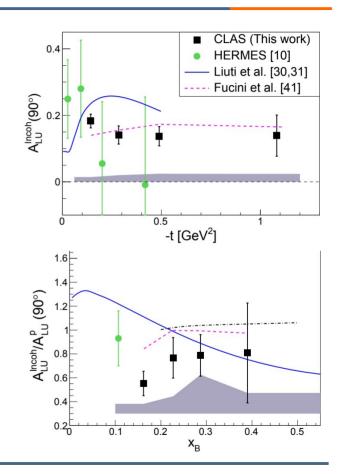
R. Dupré – Tagged DIS Experiments

Measurement with CLAS at Jefferson Lab

– Proton bound in helium target

Gives a "generalized" EMC

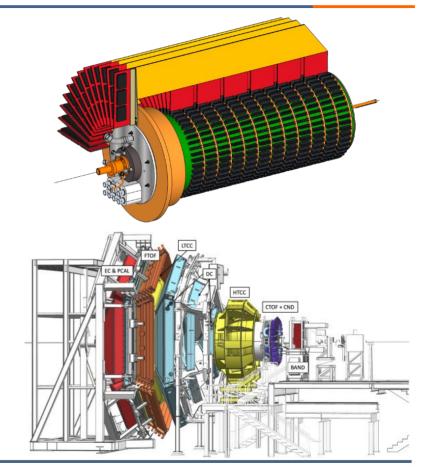
- Strongly suppressed


October 12, 2023

- Strange behavior compared to the models M. Hattawy et al. (CLAS Coll.) Phys. Rev. Lett., 123(3):032502, 2019.

More work is ongoing on these questions

On the theoretical side for a better description



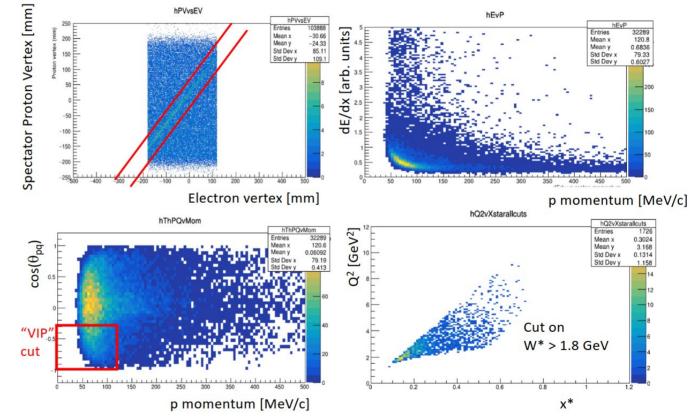
Going to Bonus12

The same detector but better

- No more structure inside
 - GEMs are self supported
- Longer target and detector
- Faster electronics
 - To get more statistics
- The same JLab but better

- A newly ugraded JLab and CLAS12

12/17


Running the Bonus12 experiment

The experiment ran in 2020

- In difficult conditions
- We accumulated ~5B triggers

Data analysis is in progress

- See here a sample of the data at 10.4 GeV
- Illustrates the coverage we have

The ALERT Detector

Going beyond the RTPC !

- Capability to differenciate various light nuclei
- Handle higher luminosity

A Low Energy Recoil Tracker

- Hyperbolic drift chamber
- Time-of-Flight array

Collaborative effort within CLAS12

- ANL, IJCLab, JLab, NMSU, Mississippi SU, ODU and Temple
- We tested a prototype with a nuclear beam in the Fall at the ALTO facility (Orsay, France)

We are scheduled to take data in July 2024

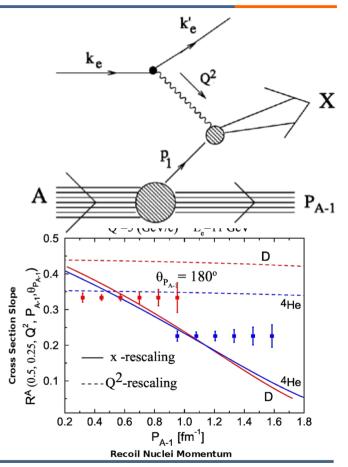
- R&D and administrative approval were long processes
- Detector construction started, stringing starts in September !
- Plan to deliver to Jlab in Jan/Feb

i

October 12, 2023

Tagging to Access Offshellness

Tagging connects EMC to nucleon kinematics

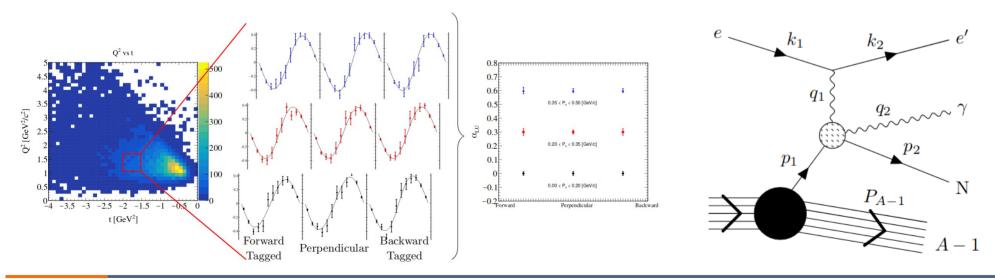

- Linked through virtuality of the nucleon
- Can differentiate mean field from SRC nucleons

This will test models and more

- Comparison between deuterium and helium
- It unequivocally resolve the link between the EMC effect and nucleon momentum

Different nuclei

- Cover different momentum ranges
- Mean field vs SRC


Understanding the Incoherent DVCS

Tagging the incoherent DVCS

- A tagged measurement can pin down the origin of the strong BSA suppression in incoherent DVCS
- By better controling the initial and final states independently

Proposed for JLab 12 GeV

- This is probably an important addition for all incoherent processes in the future

Summary

Bonus experiments used tagging as an effective neutron target

- Demonstration that the process works well
- Bonus paved the way for many more tagging experiments
 - The Bonus12 experiment is completed (including tagging DVCS on neutrons)

Tagging can be used to understand nuclear effects

- ALERT detector will be the next major experiment of tagging
 - New results for low and intermediate momentum of protons out of D
 - Expend the tagging program to helium-4
- Construction is in progress at Orsay and Argonne
 - Scheduled next year

Farther in the future... EIC

- Much more to do at the EIC

