Coherent production in UPC at the LHC

Ronan McNulty University College Dublin

GDR/QCD workshop on coherence/incoherence in diffractive collisions at DIS and at hadron colliders 11/10- 12/10 IJCLab

Overview

- UPC at LHC
- The advantages of colliding pp, pPb, PbPb
- and pA in fixed target mode
- How we distinguish coherent / incoherent
- What has been measured.
- What we should measure.
- Summary

Colourless propagators

Generally, to ensure no (colourful) QCD interaction, $d>R_1+R_2$ (1.5 - 6 fm).

Complementarity of collisions

Coherent	DPE (PP)	γP	YY
рр	~100µb	~100µb	~0.0001µb
рА	x A ^{1/3}	x Z ²	x Z ²
AA	x A ^{1/6}	x AZ ²	x Z ⁴

Complementarity of experiments/projectiles

Experimental design is important

- My signal is your background
- You can enhance your preferred physics by:
 - choice of beams
 - choice of signal
 - break-up of projectile
 - -t-dependence

coherent / incoherent

Coherent/Incoherent (theory)

- Definitions:
 - <u>Coherent</u> interaction with whole projectile and exclusive production of central state: A+B->A+C+B
 - Incoherent is A+B->A+C+B' with change of one or both projectiles

(sometimes excitations e,g, p-> Δ ->p+ γ might be considered coherent Most experiments have no chance of seeing this, even with proton tagging)

Coherent/Incoherent (exp)

- Definitions:
 - Coherent interaction where
 - no break-up is observed
 - pt distribution follows exp(bt) b large
 - Does this include nuclear excitation ?
 - Does this include coherent breakup
 - Incoherent is where:
 - break-up is observed
 - neutrons are observed
 - pt distribution follows exp(bt) b small
- The translation between the theory and (variable) experimental definitions requires clear definitions, and modelling of theory and detectors

LHC and the detectors

- LHC collides pp, pPb and PbPb
- Also possible is fixed target mode of p or Pb on gas

- LHCb: full reconstruction 2<η<5
- ATLAS, CMS, ALICE: 5<η<5
- All have vetos towards beam axis
- ATLAS, CMS, ALICE have ZDCs for neutrons
- ATLAS, CMS(+TOTEM) have roman pots close to beam (but generally do not detect recoil protons for low-mass objects)

The LHCb detector

Fully instrumented: $2 < \eta < 5$ Veto region (Run 2): $-10 < \eta < -5$, $5 < \eta < 10$

The LHCb detector

The LHCb detector

Discrimination power of Herschel

UPC physics

Dipions in pPb collisions

DPE and photoproduction via Reggeons

Two pions and nothing else in the LHCb detector

UPC physics

Purity for CEP of J/ψ

JHEP 1810 (2018) 167

Differential cross-section $pp \rightarrow pJ/\psi p$

22

Implications: Saturation?

JPG 41 (2014) 055002

LO doesn't fit data NLO does Various saturation models do

HERA measured power-law: $\sigma_{\gamma p \to J/\psi p}(W) = 81(W/90 \,\text{GeV})^{0.67} \,\text{nb}$

Photoproduction cross-section

25

Which projectile produced the photon?

Which projectile produced the photon?

J/ψ production in pPb and Pbp

Eur.Phys.J. C79 (2019) no.5, 402

J/w production in PbPb

Candidates / (5 MeV/ c^2) 0 0 0 0 0 LHCb LHCb $\psi(2S)$ PbPb $\sqrt{s_{\rm NN}} = 5.02 \text{ TeV}$ J/ψ PbPb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ PbPb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ + Data $2.0 < v^* < 4.5$ $2.0 < v^* < 4.5$ -Fit $2.0 < v^* < 4.5$ --J/₩ $--\psi(2S)$ - Data 10³ ⊗ Background - Fit ---- Coherent J/w Events / (80 E --- Coherent $\psi(2S)$ - - Incoherent J/w 60 E - Incoherent w(2 $\psi(2S) \rightarrow J/\psi$ Events / 40 E Non-resor 20 F 10 0 3000 3500 4000 -15 -10-5 -15 -10-5 0 $m_{\mu^+\mu^-}$ [MeV/ c^2] $\ln(p_{T}^{*2}) (\ln(\text{GeV}^{2}/c^{2}))$ $\ln(p_{T}^{*2})$ ($\ln(\text{GeV}^{2}/c^{2})$) 1.56.5 data stat. unc. LHCb 6.0 syst. unc. LHCb PbPb $\sqrt{s_{\rm NN}} = 5.02$ TeV Coherent J/ψ production 5.5արահարտիսիու $\mathrm{d}\sigma_{\psi(2\mathrm{S})}^{(\mathrm{d}g^{*}}[\mathrm{mb}]$ PbPb $\sqrt{s_{\rm NN}} = 5.02 \text{ TeV}$ 5.0LO pQCD (GKSZ): [dm] Luminosity unc. : 4.4% Coherent $\psi(2S)$ production LTA EPS09 4.5Luminosity unc. : 4.4% nPDF unce. 4.0 dy^* NLO pQCD (FEGLP): 3.5nPDF unce. Scale variation 3.0/^{\$\phi/2.5} 2.0 1.5 Colour-dipole: ---- bCGC+BG (GMMNS) ---- bCGC+GLC (GMMNS) ----- IP-SAT+BG (GMMNS) 1.5----- IP-SAT+GLC (GMMNS) ----- Is fluct. +BG (MSL) 1.0----- No fluct. +BG (MSL) Is fluct. +GLC (MSL) 0.5No fluct. +GLC (MSL) 0.0- GBW+BT (KKNP) 0.0--- GBW+POW (KKNP) 2 3 2 3 5 0 5 1 1 4 0 4 ---- KST+BT (KKNP) y^* ---- GG-hs+BG (CCK) y^*

JHEP 06 (2023) 146

UPC physics

 $\gamma\gamma \rightarrow \mu\mu (m_{\mu\mu} > 2.5 \text{ GeV})$ 2010 Data 50 Number of events per 100 MeV 2010 Data Background from 2010 Data Number of events per 100 MeV LPAIR Semi Inelastic Signal from LPAIR MC 40E LHCb LPAIR Fully Inelastic Pomwig DPE CERN-LHCb-CONF-2011-022 (2011 Preliminary 40 35 LHCb ∖s = 7 TeV Data Preliminary 30 30 √s = 7 TeV Data 25 20Ē 20 15E 10F 10 0.6 0.8 0.2 0.4 0 0.2 0.4 0.6 0.8 DiMuon Pt (GeV/c) DiMuon Pt (GeV/c)

Shape for inelastic events

Note: this time we have simulation that predicts the shape for the three contributions.

Fit to signal events

Background shape from data Signal shape from simulation.

Measured cross-section pµµp: 67 +- 19 pb | LPAIR (J. Vermaseren) 42 pb

Light-by-light scattering

Forbidden in classical EM Text-book illustration of QM

ATLAS collab., Nature Physics 13 (2017) 852

ATLAS collab., arXiv: 2008.05355

CMS. collab., Phys.Lett.B 797 (2019) 134826

Light-by-light scattering

M. Klusek-Gawenda, R. McNulty, R. Schicker, A. Szczurek, Phys.Rev. D99 (2019) no.9, 093013

LHCb and ALICE have potential to observe this at low mass. Important in searches for new particle decaying to photons Also: Standard candles for η and f₂ production. Are these of interest?

UPC physics

Double pomeron exchange

Tetraquarks, hybrids, glueballs

Selection requirement: Require precisely 4 tracks, at least three identified as muons

Physics Letters B Volume 831, 10 August 2022, 137199

Lack of evidence for an odderon at small t

A. Donnachie ª, P.V. Landshoff ^b 😤 🖾

Description Springer Link

Regular Article - Theoretical Physics | Open Access | Published: 19 September 2022 The ReBB model and its H(x) scaling version at 8 TeV: Odderon exchange is a certainty

I. Szanyi ⊠ & <u>T. Csörgő</u>

The European Physical Journal C 82, Article number: 827 (2022) Cite this article

arXiv:2202.03724

Odderon observation: explanations and answers to questions/objections regarding the PRL publication

Kenneth Österberg on behalf of the D0 and TOTEM collaborations

Odderon search in central production

Method 1: High p_T CEP of vector mesons.

Note:

- 1. H1 required powerlaw to fit high p_T tail
- 2. Backgrounds dominate at high p_T

Photoproduction of J/ψ has been measured at HERA (γ from e), Tevatron and LHC (γ from p or A)

In Regge theory the momentum transfer through the Pomeron is usually modelled and the experimental data $\frac{d\sigma}{dt} \sim e^{bt}$ broadly supports this

Method 1: High p_T CEP of vector mesons.

Bzdak, Motyka, Szymanowski, Cudell PRD 75 (2007) 094023

$d\sigma^{ m corr}/dy$	J/ψ		Υ		
	odderon	photon	odderon	photon	
Tevatron	0.3–1.3–5 nb	0.8–5–9 nb	0.7-4-15 pb	0.8–5–9 pb	
LHC	0.3–0.9–4 nb	2.4 15 27 nb	1.7-5-21 pb	53155 pb	

Odderon contribution might be 1-10% at LHC and would dominate at high p_T but experimentally this is difficult to see

Angular distribution of muons due to polarisation may also differ (R. Schnicker) ⁴²

Method 2: High mass CEP of VM pairs

Visible in high mass tail of $\phi\phi$?

An intriguing aspect of $\phi\phi$ is that is may have a contribution from odderon, visible at high mass.

P. Lebiedowicz,O. Nachtmann,, A.Szczurek PRD 101 (2020) 9, 094012 43

Ginzburg, Ivanov, Nikolaev, EPJdirect 1 (2003) 1. Bolz, Ewerz, Maniatis, Nachtmann, Sauter, Schoening, JHEP 1501 (2015) 151.

p

Need to tag outgoing proton to define production plane?

 M_X^2

 $M_{\rm v}^2$

m₂ [GeV]

S_{γp}

Method 4: Photoproduction of C+

Search in CEP photoproduction where quantum numbers inconsistent with pomeron

Czyzewski, Kwiecinski, Motyka, PLB398 (1997) 400. Berger, Donnachie, Dosch, Kilian, Nachtmann, EPJ C9 (1999) 491. Ryskin EPJ C2 (1998) 339. Kilian & Nachtmann, EPJ C5 (1998) 317. Harland-Lang, Khoze, Martin, Ryskin PRD 99 (2019) 3, 034011

Acta Phys. Polon. B33, 3499 (2002). (Conference proceeding.)

Direct observation at LHC?

Harland-Lang, Khoze, Martin, Ryskin PRD 99 (2019) 3, 034011

$d\sigma/dy _{y=0}$	for	Pbp	collisions	

C-even	Odderon Signal		Backgrounds		
meson (M)	Upper	QCD	Pomeron-		
	Limit	Prediction	$\gamma\gamma$	Pomeron	$V \to M + \gamma$
π^0	7.4	0.1 - 1	0.044	_	30
$f_2(1270)$	3	0.05 - 0.5	0.020	3 - 4.5	0.02
$\eta(548)$	3.4	0.05 - 0.5	0.042	negligible	3
η_c	-	$(0.1 - 0.5) \cdot 10^{-3}$	0.0025	$\sim 10^{-5}$	0.012

Note: Background processes are always much bigger

Which modes can provide significant signal? How can you be sure any excess is due to odderon?

Photoproduction of C+ meson

- To enhance the photon flux consider heavy ion collisions
 - Proton-ion (pA)
 - Ion-ion (AA*)
- Compared to pp collisions:

- SIGNAL: For Pb, photon flux is ~Z²=6700 greater and strongly peaked to backward rapidities
- Pomeron-pomeron BKG: cross-section is factor
 2-5 greater than for protons
- $-\gamma\gamma$ BKG: Z² enhanced in pA. Z⁴ in AA! (Z² in AA*)

C+ mesons dominantly produced by Double Pomeron Exchange: roughly flat with rapidity

C-even

meson

Pb

Odderon

SIGNAL PROCESS:

Key idea

C+ production by photoproduction is peaked towards low rapidities due to energy dependence of photon flux

Results for p-Pb collisions

Pomeron-Pomeron production is flat and scaled to p-p results (CMS arXiv:1706.08310)

Gamma-Odderon is forward peaked. Value unknown. Assume nominal 1nb photoproduction cross-section.

The excluded region comes from preliminary H1 result (Acta Phys. Polon. B33, 3499 (2002))

Greater sensitivity than previous result.

An excess of events would be seen, but only in the forward region i.e. for LHCb in pA and not Ap. **Distinctive signature**

Results for (incoherent) AA* collisions

Pomeron-Pomeron production is flat and scaled to p-p results

Gamma-Odderon is forward peaked but **one needs to know which ion emitted the photon.** Detecting break-up allows us do this.

1nb photoproduction cross-section assumed again.

Cross-section is ~ factor 100 greater than in pA. However, luminosity at LHC for AA is ~ factor 100 lower.

Relative background is much lower than in pA collisions.

$$A(Ap) = \frac{\sigma(pA) - \sigma(Ap)}{\sigma(pA) + \sigma(Ap)}$$
$$A(AA^*) = \frac{\sigma(A^*A) - \sigma(AA^*)}{\sigma(A^*A) + \sigma(AA^*)}$$

Asymmetry in pA/Ap would be most clearly seen in forward/backward detectors. Note: LHC has runs where they swap the direction of the projectiles

Asymmetry in AA requires you 'tag' the photon emitter: the ion that doesn't break

Conclusions

- Rich physics
 - QCD v Regge Theory and transition from perturbative to non-perturbative regimes
 - PDF extraction
 - nuclear suppression
 - meson spectroscopy
 - exotica: tetraquarks, glueballs
 - saturation
 - dark photon searches
 - odderon searches
- Separation of different processes requires better understanding of break-up process.