Modeling of Coherent Photoproduction in Hadronic Collisions I GDR QCD Workshop on Coherence/Incoherence in Hadronic Diffractive Collisions at DIS and Hadron Colliders

M. B. Gay Ducati Institute of physics, UFRGS, Brazil

Université Paris-Saclay, France

11-12/October/2023

Outlook

- Introduction
- UPC Collisions
- Peripheral Collisions
- Summary

- Theoretical Framework
 - $\rightarrow\,$ The Exclusive Photoproduction.
 - \rightarrow The Colour Dipole Models.
- Ultraperipheral Collisions (UPC)
 - \rightarrow Rapidity Distributions
- · Peripheral Collisions
 - → Rapidity Distribution
 - → Nuclear Modification Factor
 - \rightarrow Centrality dependence
- New attempts \rightarrow updates
 - \rightarrow NLO
 - → FoCal

Collisions Summary

Hadronic Interactions

• The production cross section can be written as

$$\sigma_{hh o hx} \propto f_{a/h}(x_1, Q^2) \otimes f_{b/h}(x_2, Q^2) \otimes \hat{\sigma}(ab \to cd) \otimes D_{h/c}(z_c, \hat{Q}^2)$$

 $f_p(x, Q^2) \rightarrow$ Parton Distribution Functions (PDF's): MRST, GRV, CT18, MMHT14, ... $\hat{\sigma}(ab \rightarrow cd) \rightarrow$ partonic subprocess $ab \rightarrow cd$: $q\bar{q} \rightarrow q\bar{q}, q\bar{q} \rightarrow gg, gg \rightarrow gg, ...$ $D_{h/c}(z_c, \hat{Q}^2) \rightarrow$ fragmentations functions of hadron *h* from a parton *c*.

The OCD

Factorization

Saturation Phenomena

- Some evolution equations:
- Linear equations
- DGLAP
- BFKL
- Non-Linear equations
- AGL
- JIMWLK
- BK

Peripheral Collisions Summary

Collisions

• At small-x, the gluon recombination process is important

GFPAE-IF-UFRGS

Balitsky-Kovchegov

Introduction

The QCD Factorization

Dipole Model Diffractive Production W.W. Method $\gamma - p$ Interaction $\gamma - A$ Interaction Dipole Cross Section

UPC Collisions

- Peripheral Collisions
- Summary

The Balitsky-Kovchegov Equation

 $\partial_{Y}\langle T(x,z)\rangle = \frac{\bar{\alpha}}{2\pi} \int d^{2}z \mathscr{M}(x,y,z) \left[\langle T(x,z)\rangle + \langle T(z,y)\rangle - \langle T(x,y)\rangle - \langle T(x,z)\rangle \langle T(z,y)\rangle \right]$

- This equation evolves (*T*(*x*, *y*)), average over all the dipole amplitudes *T*(*x*, *y*).
- The evolution variable is the rapidity $Y \approx \ln 1/x$.
- $\bar{\alpha}_s = \alpha_s N_c / \pi$ and $\mathcal{M}(x, y, z) = \frac{(x-y)^2}{(x-z)^2(z-y)^2}$.
- The photon splitting in the $q\bar{q}$ pair with z and 1 z fraction of light cone momentum.
- The quark or antiquark can emit soft gluons ($z_2 \ll z_1$), which can also emit softer gluons.
- In the limit $N_c \rightarrow \infty$, these soft gluons can be considered as quark-antiquark pairs.

GFPAE-IF-UFRGS

Colour Dipole Formalism

•Complementary information on gluons distribution can be obtained

r is the dipole separation. z(1-z) is the quark(antiquark) momentum fraction. b is the dipole-target impact parameter.

Photo-Induced Interactions

- Diffractive production of vector mesons in hadron-hadron collisions.
- The process is characterized by large rapidity gaps in the final state.

 $Q^2 \rightarrow$ photon virtuality. $W^2 \rightarrow \gamma * p$ center of mass energy.

 $t \rightarrow$ squared momentum transfer.

• We are interested in the first case: Exclusive Photoproduction ($Q^2 \sim 0$),

$$p \otimes Pb o Pb \otimes V \otimes p$$

The QCD Factorization Dipole Model Diffractive Production W.W. Method $\gamma - p$ Interaction

 $\gamma - A$ Interaction

Introduction

Dipole Cross Section

UPC Collisions

Peripheral Collisions

Summary

W.W. Method

Collisions Peripheral Collisions

Summary

Weizsäcker-Williams Method

• Hadron-Hadron interaction \rightarrow photon-hadron interaction

• Thus, the hadron process can be written in a simpler way

$$\sigma_X = \frac{dN(\omega)}{d\omega} \otimes \sigma_X^{\gamma}(\omega)$$

where the equivalent photon flux is written as a

$$\frac{dl(\omega)}{d\omega} = \frac{2q^2}{\pi} \left[\chi_{min} \mathcal{K}_0(\chi_{min}) \mathcal{K}_1(\chi_{min}) - \frac{1}{2} \chi^2_{min} \left[\mathcal{K}_1^2(\chi_{min}) - \mathcal{K}_0^2(\chi_{min}) \right] \right]$$

and σ_{χ}^{γ} is the photoproduction cross section.

^aUPC case, where $b > R_A + R_B$ and assuming the form factor F(q)=1, i.e, point-like charge.

 $\gamma - p$ Interaction

UPC

Collisions Peripheral

Collisions Summary

The Photoproduction Cross Section

• For $\gamma - p$ interaction, the forward scattering amplitude is given by

Im
$$A_{\text{proton}}(x,t=0) = \int \int \frac{d^2 r dz}{4\pi} \left(\psi_V^* \psi_\gamma \right)_T \sigma_{\text{dip}}^{\text{proton}}(x,r)$$

- $(\psi_V^*\psi_\gamma)_T$ photon-meson wave function \rightarrow Boosted Gaussian, better for the excited states; • $\sigma_{dip}^{proton}(x, r)$ - dipole cross section \rightarrow GBW and CGC models.
- Then, the photoproduction cross section will be

$$\sigma\left(\gamma p \rightarrow V p\right) = \frac{\left|\mathrm{Im}\; \mathcal{A}_{\text{proton}}(x,t=0)\right|^2}{16\pi B_v} \left(1 + \beta\left(\lambda_{\text{eff}}\right)^2\right) \mathcal{R}_g^2(\lambda_{\text{eff}})$$

- $x = (M_V^2 + Q^2) / (Q^2 + 2\omega \sqrt{s_{NN}})$ and B_v is the slope parameter;
- $\beta(\lambda_{eff}) = \frac{\text{Re } A_{\text{proton}}(x,t=0)}{\text{Im } A_{\text{proton}}(x,t=0)}$ restores the real contribution of the $A_{\text{proton}}(x,t=0)$;
- $R_g^2(\lambda_{eff})$ skewedness effect.

GFPAE-IF-UFRGS

The Photoproduction Cross Section

• For $\gamma - A$ interaction, the forward scattering amplitude is given by

Im
$$A_{nuc}(x,t=0) = \int \int \frac{d^2 r dz}{4\pi} \left(\psi_V^* \psi_\gamma\right)_T \sigma_{dip}^{nuc}(x,r)$$

where

UPC Collisions

W.W. Method

 $\gamma - A$ Interaction

Peripheral Collisions

Summary

$$\sigma_{\rm dip}^{\rm nuc}(x,r) = 2\int d^2b' \left\{ 1 - \exp\left[-\frac{1}{2}T_A(b')\sigma_{\rm dip}^{\rm proton}(x,r)\right] \right\}$$

b' is the photon-nuclei impact parameter.

 $T_A(b')$ is the nuclear profile function;

• Then, the photoproduction cross section will be

$$\sigma\left(\gamma A \rightarrow \textit{VA}\right) = \frac{\left|\operatorname{Im} \textit{A}_{\textit{nuc}}(x,t=0)\right|^2}{16\pi} \left(1 + \beta\left(\lambda_{\textit{eff}}\right)^2\right) \textit{R}_g^2(\lambda_{\textit{eff}}) \int_{t_{min}}^{\infty} \left|\textit{F}(t)\right|^2 \textit{d}t$$

F(t) - electromagnetic form factor and $t_{min} = (M_V^2/2\omega\gamma)^2$;

GFPAE-IF-UFRGS

Dipole Cross Section UPC Collisions Peripheral

Collisions

Summary

Dipole models

- The Golec-Biernat and Wüsthoff (GBW) model ¹:
- Model based on QCD-inspired phenomenology
 - The functional form of the dipole cross-section must have:
 - For small $r, \sigma \propto r^2$ (Colour transparency);
 - For large $r, \sigma \rightarrow constant$ (Ensures saturation).

$$\sigma_{q\bar{q}}^{GBW}(x,r) = \sigma_0[1 - \exp(-r^2 Q_s^2(x)/4)]$$

• $Q_s^2(x) = (x_0/x)^{\lambda_{GBW}}$ is the saturation scale;

• $\sigma_0 = 29.12$ mb, $x_0 = 0.41 \times 10^{-4}$, $\lambda_{GBW} = 0.29$ and $\chi^2/N_{dof} = 3.78$ - old fit for the extracted data from HERA with charm quark ($Q^2 \le 10 GeV^2$ and $x \le 10^{-2}$). Re-evaluate for this fit²

• $\sigma_0 = 27.32$ mb, $x_0 = 0.42 \times 10^{-4}$, $\lambda_{GBW} = 0.248$ and $\chi^2 / N_{dof} = 1.60$.

¹ K. G. Biernat and M. Wüsthoff, Phys. Rev. D59, 014017 (1999); Phys. Rev. D60, 114023 (1999). ² K. G. Biernat and S. Sapeta, JHEP 1803 (2018) 102..

Dipole models

• The Iancu, Itakura and Munier (CGC) model ³:

The QCD Factorization Dipole Model Diffractive Production W.W. Method $\gamma - \rho$ Interaction $\gamma - A$ Interaction Dioole Cross Section

UPC Collisions

Peripheral Collisions

Summary

$$\sigma_{q\bar{q}}^{CGC}(x,r) = \sigma_0 \times \begin{cases} \mathcal{N}_0\left(\frac{rQ_s}{2}\right)^{2(\gamma_s + (1/\kappa\lambda Y)\ln(2/rQ_s))} & : rQ_s \leq 2\\ 1 - e^{-Aln^2(BrQ_s)} & : rQ_s > 2 \end{cases}$$

•
$$A = -\frac{\mathcal{M}_0^2 \gamma_0^2}{(1-\mathcal{M}_0)^2 \ln(1-\mathcal{M}_0)}$$
 and $B = \frac{1}{2} (1-\mathcal{M}_0)^{-(1-\mathcal{M}_0)/(\mathcal{M}_0 \gamma_s)}$.

•
$$Y = \ln(1/x)$$
, $\gamma_s = 0.73$, $\kappa = 9.9$ and $Q_s(x) = (x_0/x)^{\lambda/2}$.

• Free parameters: $\sigma_0 = 27.33$ mb, $\mathcal{N}_0 = 0.7$ and $\lambda = 0.22$.

Features:

For $r \ll 2/Q_s$ (small dipoles), \mathscr{N} obtained from the saddle point approximation to the (LO) BFKL equation;

For $r \gg 2/Q_s$ (large dipoles), functional form of $\mathcal N$ obtained from solving the BK equation;

A and B restricted by continuity condition of \mathscr{N} at $\mathit{rQ}_{s}\,{=}\,2$

³Е. Iancu, К. Itakura, and S. Munier, Phys. Lett. B590, 199 (2004).

UPC Collisions

pp Collisions pA Collisions AA Collisions

Peripheral Collisions

Summary

Ultraperipheral Collisions

Results for $\sqrt{s} = 7$ **TeV in pp collisions**

• Comparison of the rapidity distribution for pp collisions with the LHCb data⁴

Introduction

UPC Collisions

pp Collisions pA Collisions

AA Collisions

Peripheral Collisions

Summary

• GBW model overestimates the data. Parametrization: M. Kozlov, A. Shoshi and W. Xiang - JHEP 0710 (2007) 020.

• The other models are consistent with the data of J/ψ and Y(1S).

M. B. Gay Ducati, F. Kopp, M. V. T. Machado and S. Martins, PRD94, 094023 (2016).

⁴ R. Aaij *et al.*, J. Phys. G40, 045001 (2013); J. Phys. G41, 055002 (2014); JHEP 1509, 084 (2015).

Results for $\sqrt{s} = 7$ TeV in pp collisions

Introduction

UPC Collisions

pp Collisions

AA Collisions

Peripheral Collisions

Summary

• Total cross section corrected by acceptance and branching ratio $(BR_{V \to \mu^+\mu^-})$.

$\sqrt{s} = 7 \text{ TeV}$	GBW	CGC	b-CGC	LHCb
J/ψ [pb]	553.87	316.82	246.29	291±20 pb
$\psi(2S)$ [pb]	10.80	4.64	2.76	6.5±1.0 pb
<i>Y</i> (1 <i>S</i>) [pb]	22.05	9.25	8.05	9.0±2.7 pb
<i>Y</i> (2 <i>S</i>) [pb]	4.16	1.71	1.59	1.3±0.85 pb
Y(3S) [pb]	2.07	0.87	0.83	<3.4 pb

Results for $\sqrt{s} = 5.02$ **TeV in pA collisions**

Introduction UPC Collisions

pA Collisions

AA Collisions

Peripheral Collisions

Summary

⁵B. B. Abelev et al. Phys. Rev. Lett. 113, (2014) 232504

Results for $\sqrt{s} = 5.02$ TeV in pA collisions

GFPAE

Peripheral Collisions

Summary

Results for $\sqrt{s} = 2.76$ **TeV in AA collisions**

Comparison of the rapidity distribution for AA collisions with the ALICE data⁶

Introduction

UPC Collisions pp Collisions

AA Collisions

Peripheral Collisions

Summary

⁶B. Abelev *et al.*, Phys. Lett. B718, 1273 (2013); E. Abbas *et al.*, Eur. Phys. J. C73, 2617 (2013).

Introduction UPC Collisions

Peripheral Collisions

Experimental Data b-Dependence The eff. Photon Flux The eff. Photonuclear Cross Section

Summary

Peripheral Collisions

ALICE Measurements - J/ψ

• The nuclear modification factor (R_{AA}) is given by ⁷

Introduction

UPC Collisions

Peripheral Collisions

Experimental Data

b-Dependence The eff. Photon Flux The eff. Photonuclear Cross Section

3

2

0.8

0.6 0.5

0.4

Summary

ALICE Measurements - J/ψ

The Average Rapidity Distribution

Introduction

Collisions

Peripheral **Collisions**

Experimental Data

b-Dependence The eff. Photon Flux The ef

Summarv

ALICE measurements ⁸

$p_T < 0.3$ GeV/c and $\sqrt{s_{NN}} = 2.76$ TeV					
Cent.%	$N_{AA}^{J/\psi}$	N ^{hJ/ψ}	$N_{AA}^{\text{excess}J/\psi}$	$d\sigma^{ m coh}_{m J/\psi}/dy$ [μ b]	
0-10	$339{\pm}85{\pm}78$	$406{\pm}14{\pm}55$	<251	<318	
10-30	$373{\pm}87{\pm}75$	$397{\pm}10{\pm}61$	<237	<290	
30-50	$187{\pm}37{\pm}15$	$126{\pm}4{\pm}15$	$62{\pm}2{\pm}5$	$73 \pm 44^{+26}_{-27} \pm 10$	
50-70	$89{\pm}13{\pm}2$	$39{\pm}2{\pm}5$	$50{\pm}14{\pm}5$	58±16 ⁺⁸ ₋₁₀ ±8	
70-90	$59{\pm}9{\pm}3$	$8\pm1\pm1$	$51{\pm}9{\pm}3$	$59{\pm}11^{+7}_{-10}{\pm}8$	

• $N_{44}^{J/\psi} \rightarrow$ raw number of J/ψ . • $N_{44}^{\text{excess}J/\psi} \rightarrow$ excess of J/ψ .

• $N_{AA}^{hJ/\psi} \rightarrow$ raw hadronic number of J/ψ .

⁸ALICE Collaboration, J. Adam et al., Phys. Rev. Lett. 116, 222301, (2016)

Collisions Peripheral Collisions

Experimental Data b-Dependence The eff. Photon Flux The eff

Summarv

STAR Measurements - J/ψ

- R_{AA} as a function of p_T for mid-rapidity (|y| < 1) ⁹.
- $\sqrt{s} = 200 \text{ GeV}$ for Au-Au and $\sqrt{s} = 193 \text{ GeV}$ for U-U.
- More intense excess for 60%-80% centrality bin.
- The J/ψ excess is still present for **40%-60%** centrality class.

 $^{^{9}}$ W. Zha (STAR Collaboration), Journal of Physics: Conference Series 779, 012039 (2017).

b-Dependence Photon Flux

• For peripheral collisions $\rightarrow N(\omega, b)$ with b-dependence ¹⁰,

Introduction

UPC Collisions

Peripheral Collisions

Experimental Data

b-Dependence

The eff. Photon Flux The eff. Photonuclear Cross Section

Summary

- $\frac{dN(\omega,b)}{d\omega db^2} = \frac{Z^2 \alpha_{qed}}{\pi^2 \omega} \left| \int d^2 k_T k_T^2 \frac{F(k)}{k^2} J_1(k_T b) \right|^2$
- Yukawa potential+hard sphere (more realistic for lead) ¹¹,

$$F(k) = \frac{4\pi\rho_0}{Ak^3} \left[\sin (kR_A) - kR_A \cos (kR_A) \right] \left[\frac{1}{1 + a^2k^2} \right]$$

¹⁰ F. Krauss, M. Greiner and G. Soff, Prog. Part. Nucl. Phys. 39, 503, (1997)

¹¹K. T. R. Davies and J. R. Nix, Phys. Rev. C14, 1977 (1976).

Comparing the Form Factors

• Centrality classes and related impact parameters range:

Introduction											
muouucuon	L	n	tr	5	Ы		\mathbf{c}	н	2	n	
				v	u	u	6		v		

UPC Collisions

Peripheral Collisions

Experimental Data

b-Dependence

The eff. Photon Flux The eff. Photonuclear Cross Section

Summary

· Analysis of the different form factors

Point Like (used in UPC)

•
$$F(k^2) = 1$$
 .

Dipole Form Factor • $F_{dip}(k^2) = \frac{\Lambda^2}{\Lambda^2 + k^2}$.

$$\begin{split} & \frac{\text{Woods-Saxon+Yukawa}}{F_{WSY}(k^2) = \frac{4\pi\rho_0}{Ak^3} \left[\sin\left(kR_{Pb}\right) \right. \\ & \left. - kR_{Pb} \text{cos}\left(kR_{Pb}\right)\right] \left[\frac{1}{1 + a^2k^2}\right]. \end{split}$$

GFPAE-IF-UFRGS

The Effective Photon Flux

Considering an effective photon flux ¹²

Introduction

UPC Collisions

Peripheral Collisions Experimental Data

b-Dependence

The eff. Photon Flux

The eff. Photonuclear Cross Section

Summary

 $\sigma_X = \int \omega rac{dN^{eff}(\omega)}{d\omega} \sigma_X(\omega)$

- **Hypothesis:** Only spectators interact coherently with the photon.
- In this scenario, $\frac{dN^{\rm eff}(\omega,b)}{d\omega}$ can be described as ¹³

$$N^{eff}(\omega,b) = rac{1}{A_{eff}(b)} \int N^{usual}(\omega,b_1) \theta(b_1 - R_A) \theta(R_A - b_2) d^2 b_2$$

• $A_{eff} = R_A^2 \left[\pi - 2\cos^{-1} \left(b/2R_A \right) \right] + (b/2) \sqrt{4R_A^2 - b^2}$ and $b_1^2 = b^2 + b_2^2 + 2bb_2\cos(\alpha)$ ¹² M. K. Gawenda and A. Szczurek, Phys. Rev. C93, 044912, (2016).

¹³ M. B. Gay Ducati and S. Martins, Phys. Rev. D97, 116013, (2018).

The Effective Photonuclear Cross Section

• The forward scattering amplitude is given by

Introduction

UPC Collisions

Peripheral Collisions Experimental Data b-Dependence The eff. Photon Flux

The eff. Photonuclear Cross Section

Summary

Im
$$\mathscr{A}_{nuc}(x,t=0) = \int \frac{d^2 r dz}{4\pi} \left(\psi_V^* \psi_\gamma\right)_T \sigma_{dip}^{nucleus}(x,r)$$

where

(

$$\sigma_{\rm dip}^{\rm nucleus}(x,r) = 2 \int d^2b' \left\{ 1 - \exp\left[-\frac{1}{2}T_A(b')\sigma_{\rm dip}^{\rm proton}(x,r)\right] \right\}$$

 Consistency with the construction of N^{eff}(ω, b), restrict σ^{nucleus}_{dip}(x, r):

$$\sigma_{\rm dip}^{\rm nucleus}(x,r) = 2 \int d^2 b_2 \Theta(b_1 - R_A) \left\{ 1 - \exp\left[-\frac{1}{2} T_A(b_2) \sigma_{\rm dip}^{\rm proton}(x,r)\right] \right\}$$

•
$$b_1^2 = b^2 + b_2^2 + 2bb_2\cos(\alpha)$$
.

Our results for $d\sigma/dy$

· Essentially, three modification were considered

Introduction

UPC Collisions

Peripheral Collisions

b-Dependence

The eff. Photon Flux

The eff. Photonuclear Cross Section

Summary

- b-dependence (S1).
- Effective photon flux (S2).
- Effective Photonuclear cross section (S3).

The scenario S3 uses the effective photon flux and the effective photonuclear cross section.

Comparing with ALICE data (S3),

Average Rapidity Distribution: 2.5 < y < 4.0

GBW / CGC	$d\sigma^{ m theo}_{J/\psi}/dy$ [μ b]	$d\sigma^{ m exp}_{J/\psi}/dy$ [μ b]
30%-50%	73 / 61	$73{\pm}44^{+26}_{-27}{\pm}10$
50%-70%	<mark>78</mark> / 66	58±16 ⁺⁸ ₋₁₀ ±8
70%-90%	75 / 63	$59{\pm}11^{+7}_{-10}{\pm}8$

- Better agreement for CGC model considering $50\% \rightarrow 90\%$.

Our results for R_{AA}

- Black circles (S1): only the b-dependence
 - Best agrees with the data only in the more peripheral region;
- Green losangle (S2): b-dependence + effective photon flux
 - Better results were achieved for the more central classes;
- Blue triangle (S3): All the three modifications was applyed
 - A slight correction in direction to data in relation to last case;

 $p_{_{\rm T}} < 0.3 \text{ GeV/c}$; 2.5 < y < 4.0; CGC model

GFPAE-IF-UFRGS

Introduction

UPC Collisions

Peripheral Collisions Experimental Data b-Dependence

The eff. Photon Flux The eff.

Photonuclear Cross Section

Summary

Introduction

UPC Collisions

Peripheral Collisions

Experimental Data b-Dependence The eff. Photon Flux

The eff. Photonuclear Cross Section

Summary

 J/ψ photoproduction in peripheral collisions

Need to account for the geometrical constraints of a given impact parameter

Transition from ultra-peripheral to peripheral collisions:

Modification of the photon flux / photonuclear cross section

Scenario 1: UPC like Scenario 2: effective photon flux Scenario 3: effective photon flux + photonuclear cross section IIM: Color Glass Condensate approach GBW: light cone dipole formalism

M. B. Gay Ducati et al., PRD 97 (2018) 11

Quark Matter 2022 - A. Neagu

 Models including only modifications of the photon flux (but VDM) do not reproduce the measured cross section towards more central collisions
 VDM: M. Klusek-Gawenda et al., PLB 790 (2019) 339-344

18

Quark Matter 2022 - A. Neagu

Quark Matter 2022 - A. Neagu

UPC Collisions

Peripheral Collisions Experimental Data b-Dependence The eff. Photon Flu

The eff. Photonuclear Cross Section

Summary

Coherent J/ ψ photoproduction in Pb-Pb collisions: centrality dependence

- · Both measurements at mid and forward rapidity don't show a significant centrality dependence*
- Measurements are qualitatively described by a large number of models developed for UPC and extended to account for the nuclear overlap

Quark Matter 2023 - A. Shatat

Introduction

Peripheral

Collisions Experimental Data b-Dependence

The eff. Photon Flux

The eff. Photonuclear Cross Section

Summary

y-dependence of the coherent J/ψ photoproduction cross section

- · A strong rapidity dependence is seen
- Models initially developed for VM photoproduction in UPC and modified for PC are able to describe qualitatively the magnitude of the cross section, but fail at reproducing the y-dependence, NEW similarly to UPC.

Models considerations:

- ----- GG-hs: photon flux with constraints on impact parameter range
 - Zha : assumptions on photon-pomeron coupling (nucleus+spectator)
 - GBW S3 → effective photon flux and photonuclear IIM S3 → cross section considered w.r.t UPC calculations (see next slide)

A. Shatat, QM, Sept. (3-9) 2023

Quark Matter 2023 - A. Shatat

NLO study in pQCD

- Scale dependence
- Gluons and quarks contributions (!)
- Nuclear effects
- Introduction
- UPC Collisions
- Peripheral Collisions Experimental Data b-Dependence The eff. Photon Flux
- The eff. Photonuclear Cross Section
- Summary

only gluons GPD's

- Gluons + quarks GPD's [Ivanov et al., Eur. Phys. J. C 34 (2004) no. 3, 297]
- How about data (LHC)?

Figures from C. Flett, PhD thesis [Flett:2021xsl]

NLO study in pQCD: amplitude

K. Eskola et al., arXiv:2203.11613 [hep-ph]

$$\mathcal{M}^{\gamma N \to V N} \propto \langle O_1 \rangle_V^{1/2} \int_{-1}^1 dx [T_g(x,\xi) F^g(x,\xi,t) + T_q(x,\xi) F^{q,S}(x,\xi,t)],$$

- $\langle O_1 \rangle_V^{1/2}$ NRQCD element
- T_g and T_q hard scattering functions from pQCD[1], scale dependent (μ_F , μ_R)
- F^g and $F^{q,S}$ GPDs[2], nonperturbative (μ_F)

$$\begin{split} \mathcal{M}|^2 &= |\mathcal{M}_G^{\mathsf{LO}} + \mathcal{M}_G^{\mathsf{NLO}}|^2 + |\mathcal{M}_Q^{\mathsf{NLO}}|^2 \\ &+ 2 \Big[\mathsf{Re}(\mathcal{M}_G^{\mathsf{LO}} + \mathcal{M}_G^{\mathsf{NLO}}) \mathsf{Re}(\mathcal{M}_Q^{\mathsf{NLO}}) \\ &+ \mathsf{Im}(\mathcal{M}_G^{\mathsf{LO}} + \mathcal{M}_G^{\mathsf{NLO}}) \mathsf{Im}(\mathcal{M}_Q^{\mathsf{NLO}}) \Big]. \end{split}$$

[1] D. Y. Ivanov, A. Schafer, L. Szymanowski, G. Krasnikov, Eur. Phys. J. C 34 (2004) no. 3, 297 [Erratum: Eur.Phys.J.C 75, 75 (2015)]

GFPAE-IF-UFRGS

Introduction

UPC Collisions

Peripheral Collisions Experimental Data b-Dependence

The eff. Photonuclear Cross Section

Summary

Comparison of LO for exclusive J/ψ photoproduction in PbPb

Introduction

UPC Collisions

Peripheral Collisions Experimental Data b-Dependence The eff. Photon Flu

The eff. Photonuclear Cross Section

Summary

- In pQCD and QCD models
- · Linear and non-linear evolution equations.
- The data favour those models

featuring moderate nuclear shadowing.

S. Ragoni, on behalf of the ALICE

Collaboration, arXiv:2305.03616v1

- In pQCD
- The $|Re(M)|^2$ in LO is almost irrelevant.
- K. Eskola et al., arXiv:2203.11613 [hep-ph]

NLO for exclusive J/ ψ photoproduction in PbPb (pQCD): contributions of quark, gluons and interference term

Introduction

UPC Collisions

Peripheral Collisions Experimental Data b-Dependence The eff. Photon Flu:

The eff. Photonuclear Cross Section

Summary

· How the quark, gluons and interference terms contribute to final amplitude.

K. Eskola et al., arXiv:2203.11613

NLO for exclusive J/ ψ photoproduction in PbPb (pQCD)

Introduction

UPC Collisions

Peripheral Collisions Experimental Data b-Dependence The eff. Photon Flu

The eff. Photonuclear Cross Section

Summary

New LHCb forward data agrees with

ALICE data also at forward direction.

Sensible to μ choice.

 However, large uncertainties remain due to the nuclear PDFs. A comparison between EPPS21, nNNPDF3.0 and nCTEQ15WZSIH uncertainties is shown.

K. Eskola et al., arXiv:2303.12630v1 [hep-ph]

NLO for exclusive J/ ψ photoproduction in PbPb (pQCD) vs colour dipole picture LO (UPC)

• The data does not support any particular model.

• Our results with dipole picture in LO are shown by the blue solid line and the green dashed line.

K. Eskola et al., arXiv:2203.11613 (pQCD)

Energy dependence for J/ψ photoproduction within colour dipole picture: NLO

The eff. Photonuclear Cross Section

Summary

Relativistic correction proportional to the heavy quark velocity squared v^2

and next-to-leading order to longitudinal vector meson.

• The smallest possible evolution rapidity Y_0 ,BK = 0 (or η_0 ,BK = 0 in the case of TBK evolution).

H. Mäntysaari et al. JHEP 08 (2022) 247

Energy dependence for J/ψ photoproduction: CGC, NLO BFKL and others

• These models consider only gluons: NLO BFKL (K-factor), JMNRT NLO (K-factor).

|t|-dependence of coherent and incoherent J/ψ photonuclear production

UPC Collisions

Peripheral Collisions Experimental Data b-Dependence The eff. Photon Flu

The eff. Photonuclear Cross Section

Summary

• Coherent J/ψ is sensitive to the average of spatial distribution of the gluons.

• Incoherent J/ψ is sensitive to the gluons variance.

None of the models manages to describe

both the slope and the normalization of the data distribution.

· It is a powerful observable to measure gluon saturation.

S. Ragoni, on behalf of the ALICE Collaboration, arXiv:2305.03616v1

- 42 -

GFPAE-IF-UFRGS

Introduction UPC Collisions

Peripheral

Collisions

b-Dependence

Photonuclear Cross Section

The eff.

Summarv

FoCAL (forward electromagnetic and hadronic calorimeter)

FoCal (Forward Electromagnetic and Hadronic Calorimeter)

FoCal calorimeter consist of two calorimeters, an electromagnetic calorimeter (FoCal-E) and an hadronic calorimeter (FoCal-H), intended to be installed in the ALICE experiment in 2026.

The FoCal-E will be a sampling calorimeter made of tungsten and silicon.

The FoCal-H will be a sampling calorimeter "spaghetti" model made of lead and scintillating fibers.

With FoCal, it will be possible to study the J/Ψ mesons through their decay into e^+e^- pairs, which can be detected by the calorimeter through the production of electromagnetic showers.

- Simulation using STARlight to generate *J*/*ψ* and *ψ*[′] events. Where the data is grouped into superclusters and matched with the physical primary particles;
- Expected yields result in a clear separation between the resonances.

Conclusions

Introduction

UPC Collisions

Peripheral Collisions

Summary Conclusions

- Exclusive quarkonium photoproduction off protons in p-Pb UPC
 Broba the gluon depoint at low x
 - Probe the gluon density at low x
 - Search for gluon saturation effects
 - Light vector mesons photoproduction in UPC provides
 - Test theoretical models
 - Study shadowing effects in the nonperturbative regime
- Photoproduction in peripheral collisions
 - Complements the knowledge on hadroproduction
 - Improve analytical description on centrality dependence
- LO calculations require comparison to NLO
 - Role of quark contribution in heavy vector meson production
 - Confrontation data on different energies, y's, pt's, centralities...

And a Look Ahead...

Introduction

UPC Collisions

Peripheral Collisions

Summary Conclusions

- UPC Pb-Pb collisions for exclusive coherent $J/\psi,$ the current data cannot distinguish between NLO pQCD and LO dipole models;
 - J/ψ photoproduction within NLO dipole picture requires the relativistic correction v^2 as well as longintudinal vector meson function at NLO to describe the data;
- Study dipole colour models with DGLAP evolution equations for peripheral collisions;
- FoCal is the best suited LHC detector subsystem to exploit this energy; it will probe the gluon densities of protons and heavy ions down to Bjorken-x values below 10^{-6} .