

WARSAW UNIVERSITY OF TECHNOLOGY

Recent results on vector meson production in UPC at STAR

Daniel Kikoła

GDR QCD workshop, Orsay, 2023

Recent STAR results

- Exclusive J/ψ and $\psi(2s)$ photoproduction and Entanglement-Enabled Spin Interference
 - Ashik Ikbal Sheikh, QM 2023
- Observation of strong nuclear suppression in exclusive J/ψ photoproduction in Au+Au UPCs at RHIC
 - Kong Tu, DIS 2023
- Probing nuclear structure with ρ^0 mesons
 - Au and U: STAR Collaboration, Sci. Adv. 9, eabq3903 (2023)
 - Ru and Zr: Jie Zhao, ATHIC 2023

Exclusive J/ ψ and ψ (2s) photoproduction in Au+Au 200 GeV

The STAR detector

TPC |y|<1 BEMC |y|<1

ToF |y|<0.9

ZDC $|\eta| > 6.6$

(±18 m from z = 0)

 Both nuclei get excited and emit neutrons in beam direction

Neutron(s) detected in ZDCs

ZDC signals show peak structure for neutrons
 >Way to trigger UPC events

 Two tracks of opposite charges in TPC

 No activity in both BBCs => Diffractive events (η-gap)

Motivation

(a) Coherent with nucleus stays intact

(b) Incoherent with elastic nucleon

(c) Incoherent with nucleon dissociative

Kong Tu, DIS 2023

Motivation

Coherent

Probing the nuclear parton distribution functions at $x \sim 0.01$ – 0.05

Incoherent

Search for possible subnucleonic density fluctuations ("hot spots")

Kong Tu, DIS 2023

J/ψ and $\psi(2s)$ in 200 GeV Au+Au UPCs

Kong Tu, DIS 2023

Coherent/incoherent separation:combined template fit (using H1 ep data and STARlight) Momentum transfer $\mathbf{t} \approx \mathbf{p}_T^2$

J/ψ and $\psi(2s)$ in 200 GeV Au+Au UPCs

Kong Tu, DIS 2023

Coherent/incoherent separation:combined template fit (using H1 ep data and STARlight) Low momentum transfer (p_T^2) dominated by coherent photoproduction

First measurement of J/ψ photoproduction vs rapidity at RHIC

Incoherent/coherent ratio sensitive to nuclear structure and nuclear deformation at small x

See W. Zhao, INT 2023

- 0n0n: no neutron on either side
- 0nXn: >=1 neutron on one side
- XnXn: >=1 neutron on both sides

Coherent J/ψ photoproduction

Shadowing model with Leading Twist Approximation describes the data very well.

The suppression factor **Data/Impulse Approximation (free nucleon)** ~ 60%

Results with resolved two-source ambiguity (which Au nucleus provides the photon)

Kong Tu, DIS 2023

(center-of-mass energy between photon and nucleon)

Coherent $\psi(2s)$ vs J/ ψ photoproduction

Next-to-Leading Order (NLO) pQCD calculation, constrained by the LHC data do not describe the STAR data

EPPS21 + scale at 2.39 GeV. Only scale uncertainty shown.

Reference to NLO pQCD calculation: a) arXiv:2210.16048 b) Phys. Rev. C 106 (2022) 3, 035202

Kong Tu, DIS 2023

Incoherent J/ψ photoproduction

Compared to the **H1 data with free proton, the suppression factor ~40%** Stronger than that for coherent production

The H1 data consistent with models with sub-nucleonic fluctuation [Phys. Rev. Lett. 117 (2016) 5, 052301]

STAR data shows the bound nucleon has a similar shape in p_T^2 as the free proton \rightarrow similar sub-nucleonic fluctuation in heavy nuclei. [Phys. Rev. D 106 (2022) 7, 074019]

Kong Tu, DIS 2023

Coherent vs incoherent photoproduction

Coherent J/ψ production is independent of neutron emissions

Incoherent J/ ψ production is highly correlated with neutron emissions

Summary

- First J/ ψ measurements in heavy-ion UPC at RHIC:
 - Strong nuclear suppression seen for both coherent (~ 40%) and incoherent (~60%) production
 - Bound nucleon and free proton have similar shape up to $p_T^2 \sim 2$ (GeV/c)²

Outlook

- Recently completed forward upgrades at STAR
 - Forward Tracking System
 - Forward Colorimeter System (EM and Hadronic
 - 2.5 < η < 4
- High-statistics data
- transversly-polarized p+p 500 GeV (run 2022)
- p+p, p[↑]+Au and Au+Au 200 GeV (2024 and 2025 (p+p, p+Au \rightarrow baseline for no saturation)
- Expected physics results
 - Low W phase space down to W < 10 GeV

 - High statistics J/ψ at higher p_T
 - Spin-dependent J/ψ production

Backup

Probing the gluonic structure of the deuteron with J/ψ photoproduction in d+Au ultra-peripheral collisions

Phys. Rev. Lett. 128, 122303

FIG. 1. Photoproduction of J/ψ in d+Au UPCs, where X represents the deuteron (coherent) or deuteron-dissociative (incoherent) system.

Spin interference effect with J/ψ

Klein et. al, Phys. Rev. Lett. **84**, 2330 (2000) Brandenburg et. al, Phys. Rev. D 106, 074008 (2022)

 ${\scriptstyle \odot}$ Polarization direction changes event-by-event => $<\!cos(2\varphi)\!>$ vanishes over many events

 ${\ensuremath{\scriptstyle \bullet}}$ Two ways for J/ ψ photoproduction— the two wave functions are created independently

 ${\ensuremath{\, \bullet }}$ Wave functions locked in phase through phase entanglement of initial γ and Pomeron

• Entanglement makes sure to observe the interference => $(\cos(2\varphi))$ pattern survives

Analogy: Double slit experiment with two entangled sources

=> Entanglement ensures the spin interference in J/ψ photoproduction 10/16 Ashik Ikbal, QM2023, Houston, Texas, USA

New insight on spin interference effect with J/ψ

 \odot STAR observed the entanglement-enabled spin interference effect with UPC ho^0

• $\rho^0 \rightarrow \pi^+ \pi^-$: short lifetime (1 fm), localized wave function << b - interference occurs in the daughter pions (spin 0) level

STAR Collaboration, Sci. Adv. 9, eabq 3903 (2023)

 \odot J/ ψ has longer lifetime, extended wave function

• J/ ψ decay daughters, electrons (spin 1/2) are fermions, $J/\psi \rightarrow e^+e^-$

 \odot Measurements of the spin interference with J/ ψ will bring more info

=> J/ψ spin interference is an opportunity to study new physics in this domain

Spin interference of J/ψ

• Measured the raw cos(2 ϕ) modulations for J/Ψ (2.95 < m_{ee} < 3.2 GeV) with p_T < 200 MeV/c

• The $cos(2\phi)$ modulation strength obtained from fit: $1 + a_2 cos(2\phi) => a_2$ is the measure of the modulation

=> Cos(2φ) modulation is present in the raw data — Need to extract the modulation strength

Signal for J/ψ Spin interference

 $_{\odot}$ Measured and corrected signal for J/Ψ spin interference:

 $a_2 = 0.102 \pm 0.027 \pm 0.029$

Measurement has ~3σ significance above zero

 Compared with STARLight and theory calculations

STARLight has no spin interference physics
 – consistent with zero

 Theory (Diffractive+Interference) predicts negative modulation

Theory predictions : W.B. Zhao et al. (private communication) & arXiv:2207.03712

=> Observed spin interference signal ~10% in the measured kinematic range

The $p_{\rm T}\text{-dependent}$ interference of J/ ψ

- ${\scriptstyle \bullet}$ Measured interference signal shows strong p_T dependence and rises toward positive
- STARLight prediction is consistent with zero
- ${\ensuremath{\bullet}}$ Diffractive+interference calculations are negative at low and high p_T
- Diffractive+interference with additional γ radiation predicts negative at low p_T and rises towards positive value at higher p_T

Diff+Int predictions : W.B. Zhao et al. (private communication) & arXiv:2207.03712 Diff+Int+Rad predictions : Brandenburg et. al, Phys. Rev. D 106, 074008 (2022)

=> Modulation strength positively increases with p_T

figure Diffractive photoproduction of ρ⁰ in isobar

- Systematic uncertainty sources: dca: 1.0, 2.0 (3.0) cm; nHitsFit: 20 (15); |V_z|: 50 (100) cm
 Total systemic uncertainty : RMS(σ (dca)) ⊗ σ(nHit) ⊗ σ(Vz)
- > Diffraction pattern (minima) of the coherent ρ^0 production

Ru and Zr nuclear structure

 $\textbf{A^*e}~\mbox{-}b^{*t}$, $~(t\simeq -p_T{}^2)$

- > Indication of larger Zr size than Ru from the γ -A interaction. The slope of the dN/dt ratio is 11.0+/- 2.9 +/- 0.3 (~3 σ sigma effect)
- Interference and deformation effects need to be considered

STAR Collaboration, Sci. Adv. 9, eabq3903 (2023)

Au and U nuclear structure

Table 2. Comparison between measurements and theory. Radius and $\langle \cos 2\phi \rangle$ from STAR data and those used or predicted in the models and nuclear charge radius (R_p). The reported $\langle \cos 2\phi \rangle$ corresponds to $\pi^+\pi^-$ pairs with 0.65 < $M_{\pi\pi}$ < 0.9 GeV and P_T < 0.06 Gev.

	¹⁹⁷ Au	²³⁸ U
STAR <i>R</i> (fm)	6.53 ± 0.03 ± 0.05	$7.29 \pm 0.06 \pm 0.05$
STAR (cos 2φ) (%)	$\begin{array}{c} \text{29.2} \pm 0.4 \text{ (statistical)} \pm 0.4 \\ \text{(systematic)} \end{array}$	$\begin{array}{c} 23.7 \pm 0.6 \text{ (statistical)} \pm 0.4 \\ \text{(systematic)} \end{array}$
<i>R</i> _p (fm)	6.38	6.87
Model I (II) R (fm)	6.38 (6.9)	

Model I: W. Zha, et al. Phys. Rev. D 103, 033007 (2021); Phys. Rev. C 99, 061901 (2019)

Model II: H. Xing et al., J. High Energ. Phys. 2020, 064 (2020).

STAR Collaboration, Sci. Adv. 9, eabq3903 (2023)

Au and U nuclear structure

STAR Collaboration, Sci. Adv. 9, eabq3903 (2023)

Neutron emission helps resolve the two-source ambiguity

$$d\sigma^{AnBn}/dy = \Phi_{T.\gamma}^{AnBn}(k_1)\sigma_{\gamma^* + Au \to J/\psi + Au}(k_1) + \Phi_{T.\gamma}^{AnBn}(k_2)\sigma_{\gamma^* + Au \to J/\psi + Au}(k_2)$$
Measurements Photon fluxes Unknowns
(slide 9) (slide 11)

Eur. Phys. J C (2014) 74:2942

See also CMS talk on Tuesday by Z. Ye

Need to measure differential cross section in *y* and in neutron emission classes; **at least 2 equations to solve 2 unknowns.**

Kong Tu