

RECENT EXPERIMENTAL RESULT FROM ALICE AND PROSPECTS

IJCLab, CNRS/IN2P3, Université Paris-Saclay, Orsay

GDR-QCD Workshop, 2023

Dukhishyam Mallick

11/10/2023

Using the LHC as YY, YPb and yp collider

GDR QCD workshop, IJCLab

The most powerful collider not only for pp and Pb-Pb collisions, but also for photon-photon and photon-hadron interactions

Equivalent photon approximation (EPA)

E.Fermi

Fast moving charged particles produce strong electromagnetic field [1]

Electromagntic fileds \approx photon fluxes

[1] E. Fermi, Nuovo Cim.,2:143–158, arXiv:hep-th/0205086 (1925) [2] C.F. von Weizsacker, Z. Phys. 88, 612 (1934) [3] E. J. WILLIAM S, Kgl. Danske Videnskab. Selskab Mat.-Fys. Medd. 13, 4 (1935)]

Later, this method was extended to relativistic region($v \approx c$) by Weizsacker-Williams , known as EPA Method [2.3]

Equivalent photon approximation (EPA) in heavy-ion collisions o.

Relativistic heavy-ions are strong EM field emitters

EM fields can be treated in terms of photon quanta or flux

Electromagnetic fields

```
In heavy-ion collisions (HIC) :
|E| \sim 5 \times 10^{16} - 10^{18} \text{ V/cm}
|B| \sim 10^{14} - 10^{16} T
V. Skokov et al, Int.J.Mod.Phys.A 24 (2009) 5925-5932
Magnetic field in other systems
Pulsar \sim 10^{11} \text{ T}
Earth ~ 10^{-5} T
                  Strongest EM fields in the Universe
```

- Maximum photon energy LHC ~ 80 GeV RHIC ~ 3 GeV

 $E_{\mathrm{\gamma}}$, max $\approx \gamma \hbar c/R$ γ = Lorentz factor R = Radius of the nucleus

11th Oct, 2023

mallick.dukhishyam@in2p3.fr

UltraPeripheral Collisions (UPCs) : $b > R_1 + R_2$

5

Photon-induced processes in heavy-ion collisions

Types of interactions

GDR QCD workshop, IJCLab

Photon-induced processes in heavy-ion collisions

11th Oct, 2023

Vector meson photoproduction in HICs

LO : Leading order

 W_{XPb} : Center-of-mass energy of photon-lead system t: Mandelstam variable = – p_T^2

$$x = \frac{m_{J/\psi}}{\sqrt{s_{\rm NN}}} \times \exp(\pm y)$$

Clean experimental signature and probing different photoproduction mechanisms

Imaging of nuclear gluon distributions in nuclei at low Bjorken-x

8

The ALICE Apparatus

Data sample : 2015 + 2018 Pb—Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV (Run 2)

mallick.dukhishyam@in2p3.fr

Experimental observation: Coherent VM photo production in UPC

VM photoproduction : experimental observations in UPC

Coherent photo production process dominates at low p_T

10

STARlight MC : Comp. Phys. Comm. 212 (2017) 258.

Phys. Lett. B798 (2019) 134926

VM photo production cross section vs. y in UPC

Coherent J/ψ photo production

Models cannot describe at the same time the mid and forward rapidity cross section measurements

GDR QCD workshop, IJCLab

Nuclear suppression factor (shadowing) =

$$S_{\rm Pb}(y \sim 0) = \sqrt{\frac{d\sigma}{dy}} \frac{d\sigma}{dy}_{data} = 0.64 \pm 0$$

Impulse approximation: [PRC88, 014910 (2013)] STARLIGHT: [Comp. Phys. Comm. 212 (2017) 258] EPS09 LO (GKZ): [PRC. 93(5), 055206 (2016)] LTA (GKZ): [Phys. Rep.512, 255-393 (2012)] IIM BG (GM): [P.RC 90, 015203 (2014)] and [J. Phys.G 42(10), 105001 10-(2015)] Ipsat (LM) : [PRC. 83,065202 (2011)] and [PRC. 87, 032201 (2013)] BGK-I (LS): [PRC. 99(4), 044905 (2019)] GG-HS (CCK): [PRC. 97(2), 024901 (2018)], and [PLB 766, 186-191 (2017)] b-BK (BCCM): [PLB 817, 136306 (2021)]

$$x = \frac{m_{J/\psi}}{\sqrt{s_{\rm NN}}} \times \exp(\pm y)$$

Models including nuclear shadowing are in agreement with the measurement

VM photo production cross section vs. y in UPC

Coherent J/ψ cross section

GDR QCD workshop, IJCLab

Coherent ψ ' cross section

ALI-PUB-499963

VM photo production cross section ratio vs. y in UPC

Eur. Phys. J. C 81 (2021) 712

ALICE : at mid-y

 $\sigma_{\psi(2S)}/\sigma_{J/\psi(1S)}$:

0.18 ± 0.0185(stat.) ± 0.028(syst.) ± 0.005(BR).

Recent experimental results in UPC collisions on coherent photoproduction at LHCb, Ronan Mcnulty, 12/10/2023

GDR QCD workshop, IJCLab

13

QM 2023, https://indico.cern.ch/event/1139644/timetable/#20230906

JHEP 06 (2023) 146

More details :

Experimental observation:

Coherent VM photo production in Peripheral Collisions

photoproduction in Pb-Pb collisions in PCs VM

PRL 116, 222301(2016) STARlight MC : Comp. Phys. Comm. 212 (2017) 258.

First J/ ψ excess for $p_T < 0.3$ GeV/c is observed in 70–90% Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV (PRL 116, 222301(2016)

PCs = Peripheral collisions

PCs.

mallick.dukhishyam@in2p3.fr

ALI-PREL-547989

The RAA largely increases for p_{τ} < 0.3 GeV/c and it has a hierarchy in y, the most forward RAA is the least enhanced

GDR QCD workshop, IJCLab

Modelization of hadronic J/ψ yield contribution for $p_T < 0.3$ GeV/c

The J/ψ cross section in pp collisions and the $J/\psi R_{AA}$ are used as inputs for modeling the expected hadronic J/ψ yield

Coherent J/4 photoproduction : centrality dependence

mid rapidity

Measurements at mid rapidity doesn't show a significant centrality dependence Measurements are qualitatively described by a large number of models developed for UPC and extended to account for the nuclear overlap

18

GDR QCD workshop , IJCLab

* The cross section is not normalized to the centrality interval width

Coherent J/ψ photoproduction : centrality dependence

ALI-PUB-561540

* The cross section is not normalized to the centrality interval width

Both measurements at mid and forward rapidity don't show a significant centrality dependence Measurements are qualitatively described by a large number of models developed for UPC and extended to account for the nuclear overlap

GDR QCD workshop , IJCLab

mallick.dukhishyam@in2p3.fr

Coherent J/4 photoproduction : energy dependence

ALI-PUB-561535

Measurements don't show a significant centrality/energy dependence

Measurements are qualitatively described by a large number of models developed for UPC and extended to account for the nuclear overlap

GDR QCD workshop, IJCLab

Forward rapidity, centrality and energy dependence

J/ψ photoproduction cross section vs. y in PCs

ALI-PREL-548022

GDR QCD workshop, IJCLab

 J/ψ excess yield = J/ψ raw yield - J/ψ hadronic yield

The coherent J/ψ yield is obtained by correcting the excess yield for the fraction of incoherent J/ ψ (fI, 8.9%) and the fraction of coherent (fd, 6.6%) $\psi(2S) \rightarrow J/\psi$ evaluated in UPC. arXiv:2204.10684

A strong rapidity dependence is seen

ALI-PREL-547942

Models initially developed for VM photoproduction in UPC and modified for PC are able to describe qualitatively the magnitude of the cross section, but fail at reproducing the y-dependence, similarly to UPC.

GDR QCD workshop, IJCLab

J/ψ photoproduction cross section vs. y in PCs

PCs.

J/ψ photoproduction cross section vs. y in PCs

ALI-PREL-547985

The three scenarios are qualitatively describing the cross section Any effect related to the nuclear overlap is expected to be small in the peripheral 70–90% centrality range

Understanding the impact of the nuclear overlap on the VM photoproduction cross section measurement is a theoretical challenge

Photon energy ambiguity

For a fixed mass $(m_{J/\psi})$ and center-of-mass energy $(\sqrt{s_{NN}})$

Bjorken-x depends on center-of-mass energy of photon-Pb system ($W_{\gamma}Pb$) and rapidity of VM

24

Photon energy ambiguity

Coherent J/4 with Neutron emission

Recent measurement photo nuclear cross section ($\sigma_{\gamma Pb}$) access to low-x (10-5) At low-x data favors both saturation and shadowing models whereas at x (~ 10^{-2}) LTA and impulsive approximation describes the measurement

GDR QCD workshop, IJCLab

mallick.dukhishyam@in2p3.fr

Photon energy ambiguity : simultaneously measurement

Perform two independent measurements at the same rapidity, but different impact parameter, then solve the equations.

$$\left(\frac{d\sigma_{\rm PbPb}}{dy} \right)_{A} = n_{\gamma}(y; \{b\}_{A})\sigma_{\gamma\rm Pb}(y) + n_{\gamma}(y) +$$

For example, use peripheral and ultra-peripheral collisions

JGC, PRC **96**, 015203 (2017)

Caveat : this calculation considers the photon-nucleus cross sections in both PC and UPC to be the same.

Goal is extracted: JYPD VS. WYPD OT X

ALI-PREL-536145

Caveat : this calculation considers the photon-nucleus cross sections in both PC and UPC to be the same.

Photon energy ambiguity : simultaneously measurement

Using new rapidity-dependent results provide further constraint on photonuclear cross section computations

Coherent VM photo production in UPCs and PCs

GDR QCD workshop, IJCLab

Polarization:

Polarization : Coherent vector meson photoproduction

Polarization refers to the particle spin alignment with respect to a chosen direction

meson (J/ψ)

Vector meson (VM) has retained same helicity and polarization as that of the initial photon that interacted with the target Phys. Lett. B 31 (1970) 387-390, JETP Lett. 68 (1998) 696-703

Helicity frame z-axis (polarization axis): flight direction of the J/ψ in its rest frame

GDR QCD workshop, IJCLab

s-channel helicity conservation (SCHC): helicity or polarization of photon transferred to vector

Dilepton decay angular distribution

P. Faccioli et al., Eur.Phys.J.C69:657-673, 2010

 $\begin{array}{l} --\lambda_{\theta}=+1\\ \dots\lambda_{\theta}=0\\ --\lambda_{\theta}=-1 \end{array}$

θ₂SO2 1.8

£1.6 °ہے

 $W(\cos\theta,\phi) \propto \frac{1}{3+\lambda_{\theta}} \cdot (1+\lambda_{\theta}\cos^2\theta + \lambda_{\phi}\sin^2\theta\cos^2\phi + \lambda_{\theta\phi}\sin^2\theta\cos\phi)$

Polarization : Coherent vector meson photo production in UPC

Do we expect similar observation for J/ψ at low p_T (< 0.3 GeV/c) in Pb—Pb collisions with nuclear overlap (70-90%)?

GDR QCD workshop, IJCLab

Additional challenge w.r.t UPC measurement : deal with a contamination from hadronic J/ψ

A hint for transverse polarization from $\cos\theta$ angular distribution

[arXiv:2204.10684]

32

GDR QCD workshop , IJCLab

Inclusive J/ψ polarization in Pb-Pb collisions for $p_T < 0.3$ GeV/c

The λ_{θ} parameter is consistent with the UPC measurement for coherently photoproduced J/ ψ within uncertainties

 \rightarrow As expected in this kinematic region, where J/ ψ coherent photoproduction dominates (~ 78%) over the J/ ψ hadronic production

Summary

Coherent photo production cross section measurements: \mathbf{M} No significant centrality/energy dependence are seen in coherent J/ ψ photoproduction cross section \mathbf{M} First y-differential measurement of coherent J/ψ photoproduction cross section in peripheral Pb-Pb collisions (PC) at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ for $p_T < 0.3 \text{ GeV/c}$

Shows a strong y-dependence similar to that observed in Ultraperipheral collisions (UPC)

Measurements are qualitatively described by a large number of vector meson photoproduction models developed for UPC and extended to PC, but fail at reproducing the y-dependence (similarly to UPC)

Polarization measurement:

 \mathbf{M} First inclusive J/ψ polarization measurement for $p_{\tau} < 0.3$ GeV/c in peripheral Pb-Pb collisions with nuclear overlap at $\sqrt{s_{NN}} =$

5.02 TeV

In agreement with the transverse polarization scenario (SCHC hypothesis) and consistent with a major contribution from a

photoproduction process in the region of study.

Outlook

Photoproduction cross section

 \Box The coherent J/ ψ photoproduction cross section measurement can be exploited to extract photonuclear cross sections in two Bjorken-x regions [J.G. Contreras, Phys. Rev. C 96, 015203 (2017)]

ALICE Run 3 will provide a large Pb-Pb data sample and new MFT results:

- Will permit to study J/ψ photoproduction in the most central collisions
- To better constrain models (especially the role of spectator nucleons in the coherence condition)

-> precision and more differential measurements

Look at heavier vector mesons could become also possible to pin down possible QGP effects on the measured probes \Box Look at ratios of coherent $\psi(2S)/J/\psi(1S)$: centrality and rapidity

Polarization :

 \Box Precision measurement in J/ ψ and other VMs (i.e ψ (2S), Y(nS) etc.)

Will explore interference and entanglement phenomena of VMs

34

Back up

ALICE shines light into the nucleus to probe its structure

https://home.cern/news/news/physics/alice-shines-light-nucleus-probe-its-structure

GDR QCD workshop, IJCLab

The structure of the gluonic matter in the nucleus gets further exposed when probed by higher energy photons

VM photo production cross section ratio vs. y in UPC

JHEP 06 (2023) 146

 $coh.\sigma_{\psi(2S)}/coh.\sigma_{J/\psi(1S)}$ 0.18 ± 0.0185(stat.) ± 0.028(syst.) ± 0.005(BR).

GDR QCD workshop, IJCLab

error bars show the statistical uncertainties only. The points for R are shown at the mean W and |t| values for each bin as determined for the $J/\psi(1S)$ data (see table 1). The points for $R_{\mu\mu}$ and $R_{J/\psi \pi\pi}$ are displaced horizontally for better visibility.

Ratio of $\psi(2S)$ to J/ ψ in LHC Run 3 proton-proton collisions as a function of transverse momentum, showing ALICE's capability for measurements c the excited and ground charmonium states in the central (red points) and forward (black points) region. (Image: ALICE)

Coherent J/4 photoproduction : Rapidity (4) dependence

Models predict a strong y-dependence of the VM photoproduction cross section M. B. Gay Ducati et. al, PRD 97, 116013 (2018)

PCs = Peripheral collisions

Additional differential measurements are needed to better constrain models, as done in UPC

 J/ψ signal extraction from the invariant-mass distribution of the decay daughters

 $J/\psi \rightarrow \mu^+\mu^-$, 70–90%, 2.5 < y < 4, p_T < 0.3 GeV/c

The state of art: raw J/ψ yield in rapidity intervals

Raw yield excess is observed for $p_{\tau} < 0.3$ GeV/c for all y

 $J/\psi \rightarrow \mu^{+}\mu^{-}$, 70–90%, 2.5 < y < 4, p_T < 0.3 GeV/c

ALI-PREL-546762

 J/ψ signal extraction in angular intervals for $p_T < 0.3$ GeV/c

J/ψ signal is extracted in six cos θ intervals using the dimuon invariant mass distribution

Modelization of hadronic J/ψ yield contribution for $p_T < 0.3$ GeV/c

The RAA largely increases for p_{τ} < 0.3 GeV/c and it has a hierarchy in y, the most forward RAA is the least enhanced

The J/ ψ cross section in pp collisions and the J/ ψ RAA are used as inputs for modeling the expected hadronic J/ ψ yield

Exclusive J/ψ in p-Pb UPC

Eur. Phys. J. C (2019) 79: 402 (ALICE midrapidity and semiforward) Phys. Rev. Lett. 113 no. 23, (2014) 232504 (ALICE forward)

ALICE, arXiv:2304.12403

 $x = e^{\pm y} M_{\mathrm{J/}\psi} / 2E_{\mathrm{p}}$

ALICE data probe Bjorken- $x \sim 10^{-5}$ Power-law growth of cross sections observed

-> No change in the behaviour of the gluon PDF

in the proton between HERA and LHC energies

Photon energy ambiguity : Neutron emission

GDR QCD workshop, IJCLab

Coherent VM with Neutron emission

Guzey et al., Eur.Phys.J.C 74 (2014) 7, 2942

$$\frac{d\sigma_{PbPb}^{0N0N}}{dy} = n_{0N0N}(\gamma, +y) \cdot \sigma_{\gamma Pb}(+y) + n_{0N0N}(\gamma, -y) \cdot \sigma_{\gamma Pb}(-y)$$

$$\frac{d\sigma_{PbPb}^{0NXN}}{dy} = n_{0NXN}(\gamma, +y) \cdot \sigma_{\gamma Pb}(+y) + n_{0NXN}(\gamma, -y) \cdot \sigma_{\gamma Pb}(-y)$$
ON

44

GDR QCD workshop, IJCLab

sing the neutron ZDCs on the A and C side to detect the neutrons!

NON: no neutrons on either ZDCs

NXN: neutrons only on one side

Coherent J/ψ with Neutron emission

$$\frac{d\sigma_{PbPb}^{0N0N}}{dy} = n_{0N0N}(\gamma, +y) \cdot \sigma_{\gamma Pb}(+y) + n_{0N0N}(\gamma, -y) \cdot \sigma_{\gamma Pb}(-y)$$

$$\frac{d\sigma_{PbPb}^{0NXN}}{dy} = n_{0NXN}(\gamma, +y) \cdot \sigma_{\gamma Pb}(+y) + n_{0NXN}(\gamma, -y) \cdot \sigma_{\gamma Pb}(-y)$$

у	$n_{\gamma}(0n0n)$	$n_{\gamma}(0nXn+Xn0n)$	$n_{\gamma}(XnXn)$	$\sigma_{\gamma Pb}^{IA}$ (µb)
3.5 < y < 4	178.51	18.18	6.34	10
3 < y < 3.5	162.99	18.19	6.34	14
2.5 < y < 3	147.46	18.19	6.34	19
0.2 < y < 0.8	77.88	17.88	6.33	48
-0.2 < y < 0.2	62.86	17.47	6.27	58
-0.8 < y < -0.2	48.31	16.75	6.18	71
-3 < y < -2.5	3.91	4.97	2.78	176
-3.5 < y < -3	1.22	2.15	1.42	215
-4 < y < -3.5	0.26	0.61	0.48	262

ALI-PUB-543151

45

ALICE, arXiv:2305.19060

Guzey et al., Eur.Phys.J.C 74 (2014) 7, 2942

Energy/Bjorken-x dependence of coherent production from Run 2: Models

GDR QCD workshop, IJCLab

photo nuclear cross section

Nuclear suppression factor : shadowing

Energy/Bjorken-x dependence of coherent production from Run 2: Shadowing

GDR QCD workshop, IJCLab

Outlook: Run 3 and Run 4

CERN Yellow Rep. Monogr. 7 (2019) 1159-1410, arXiv 1812.06772

		PbPb		
	σ	Central 1	Forward 1	_
Meson		Total	Total 1	
$ ho o \pi^+ \pi^-$	5.2b	5.5 B	4.9 B	_
$\rho' \to \pi^+ \pi^- \pi^+ \pi^-$	730 mb	210 M	190 M	
$\phi ightarrow { m K}^+ { m K}^-$	0.22b	82 M	15 M	
${ m J}/\psi o \mu^+\mu^-$	1.0 mb	1.1 M	600 K	
$\psi(2{ m S}) o \mu^+ \mu^-$	30µb	35 K	19 K	
$ m Y(1S) ightarrow \mu^+ \mu^-$	2.0 µb	2.8 K	880	

t-dependence incoherent J/4 photo production

Models including fluctuations in subnucleon scale give reasonably good description of the measurement -> suggests nuclear gluon density is not static at high energies

GDR QCD workshop, IJCLab

RAA modelization for estimate photoproduction contribution **Methodology : Photoproduction cross section** To extract the coherent J/ψ photoproduction cross section in Pb-Pb PC $\frac{d\sigma^{coh\,J/\Psi\,photo}_{Pb-Pb}}{dy}\left[p_T\ <\ 0.3\ GeV/c\right] \\ = \frac{N^{coh}_{J/\Psi}}{(\mathscr{A}*\varepsilon)^{coh\,J/\Psi}.BR(J/\Psi\to\mu^+\mu^-).\mathscr{L}.\Delta y}$ J/ψ J/ψ decay of the Pb-Pb data branching ratio (Acceptance*Efficiency) sample $N_{AA}^{J/\Psi raw\,yield} - N_{AA}^{h\,J/\Psi} = N_A^J$ in each dy , $[0 < p_T < 0.3]$ GeV/c]

via channel $J/\psi \rightarrow \mu^+\mu^-$

Integrated luminosity

$${}^{J/\Psi excess}_{AA} \to N^{coh}_{J/\Psi} = \frac{N^{J/\Psi excess}_{AA}}{1 + f_I + f_D}$$

RAA modelization for estimate photoproduction contribution

in each dy,
[0 < pr < 0.3
geV/c]
$$\begin{split} & \beta_{AA}^{hJ/\Psi} = \mathscr{N} \cdot \int_{0}^{0.3} \frac{d\sigma_{pp}^{hJ/\Psi}}{dp_{T}} * R_{AA}^{hJ/\Psi} \\ & \beta_{AA}^{hJ/\Psi} = \mathscr{N} \cdot \int_{0}^{0.3} \frac{d\sigma_{pp}^{hJ/\Psi}}{dp_{T}} * R_{AA}^{hJ/\Psi} \\ & \text{International factor} \\ & \text{International factor} \\ & \text{International factor} \\ \end{split}$$
$$\mathcal{M} = \frac{\int_{0}^{8} (\frac{d\sigma_{pp}^{hJ/\Psi}}{dp_{T}} * R_{AA}^{hJ/\Psi} * (\mathscr{A} * \varepsilon)_{AA}^{hJ/\Psi}) dp_{T}}{\int_{1}^{8} (\frac{dN_{A}^{hJ/\Psi}}{dp_{T}}) dp_{T}} \\ \end{bmatrix}$$
$$I = J/\Psi \text{ production cross section in post section in post section in the section in th$$

Polarization : photoproduction of vector mesons

ρ^0 meson measurement : consistent with SCHC

Phys. Rev. D 7, 3150, (1970) by SLAC Collaboration Z. Phys. C 53, 581–594, (1992) by CERN SPS

 $\rho^{0}[1]$, $\omega[2]$ and ϕ [3] photoproduction by CLAS Collaboration : SCHC violation Eur. Phys. J. A 39, 5–31, (2009) [2] Int. J. Mod. Phys. Conf. Ser. 26,1460063, (2014) [3] Phys.Rev.C 90, 019901, (2014)

ρ0 photoproduction by STAR Collaboration : consistent with SCHC Phys. Rev. C 77 (2008) 034910

Exclusive J/\u03c6 photoproduction by H1 and ZEUS collaborations : consistent with SCHC Eur. Phys. J. C 46, 585–603 (2006)

[2] Nucl. Phys. B 695, 3–37 (2004)

Do we see similar observation for J/ψ at low p_{τ} (< 0.3 GeV/c) in Peripheral Pb-Pb collisions with nuclear overlap?

 \checkmark Is the J/ ψ transversely polarized and therefore obey the SCHC hypothesis ?

 \checkmark Another way to test the **production mechanism** at the origin of the J/ ψ very low p_{τ} excess

✓ Also **complementary** to the UPCs measurement

Observables : Extract angular variables and spin density matrix element

 \sim

— λ₀ = +1 2 1.6 $-\lambda_0 = 0$ $-\lambda_0 = -1$ 1.28 0.8 0.6 0.4 -08-06-04-02 0 02 04 06 08

$$\begin{split} r_{00}^{04} &= \frac{1 - \lambda_{\theta}}{3 + \lambda_{\theta}} \\ r_{1,-1}^{04} &= \frac{\lambda_{\varphi}}{2} \cdot (1 + r_{00}^{04}) \; . \end{split}$$

