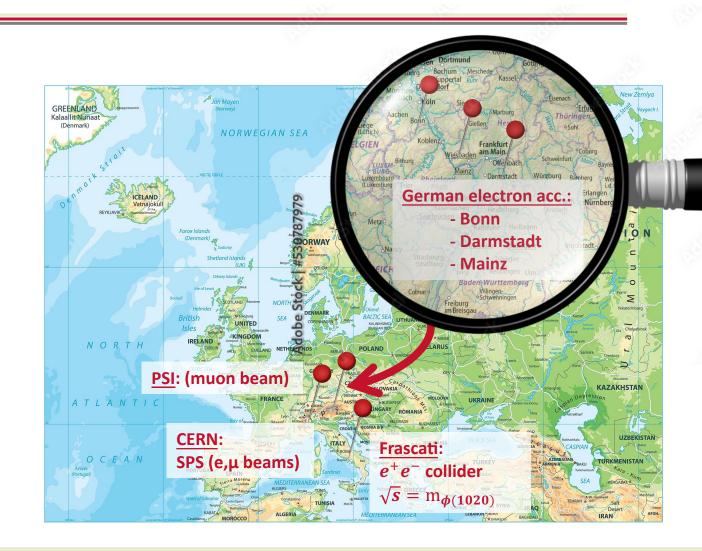
European Nuclear Physics Conference, September 21-26, 2025 Caen/France

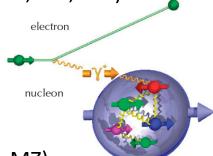
Lepton Facilities in Europe – Status and Perspectives

Achim Denig – JGU & HIM Mainz PRISMA+ Cluster of Excellence

European Nuclear Physics Conference, September 21-26, 2025 Caen/France

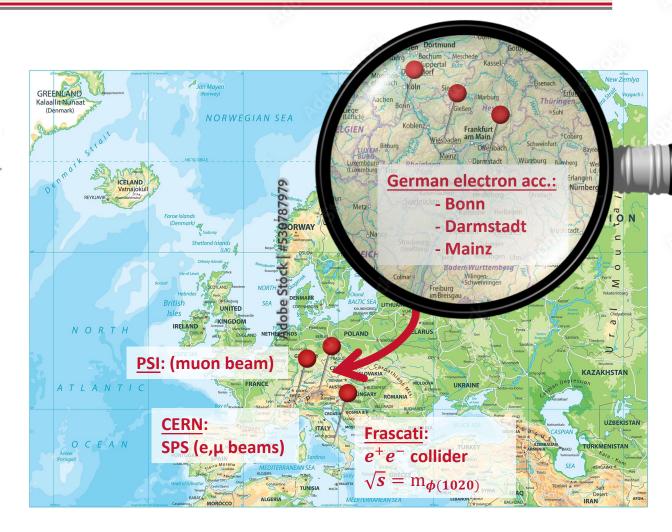

Lepton Facilities in Europe – Status and Perspectives

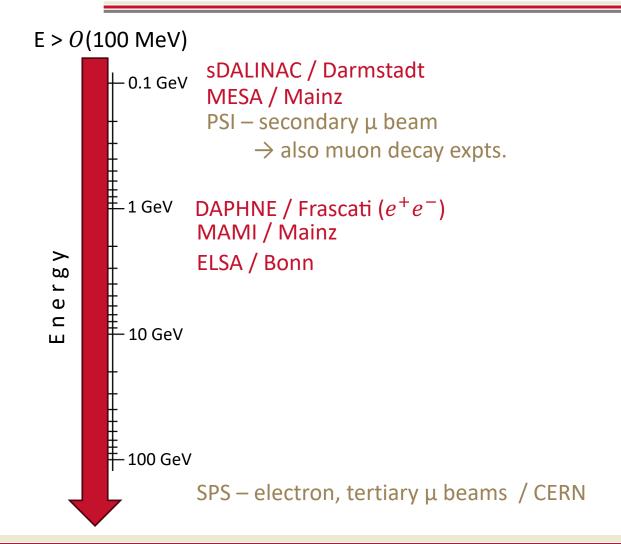
- Focus in this talk on the research in the field of nuclear/hadron/particle physics
- Running accelerators & future directions, concentrate on fixed-target machines, only one running e^+e^- collider: DA Φ NE

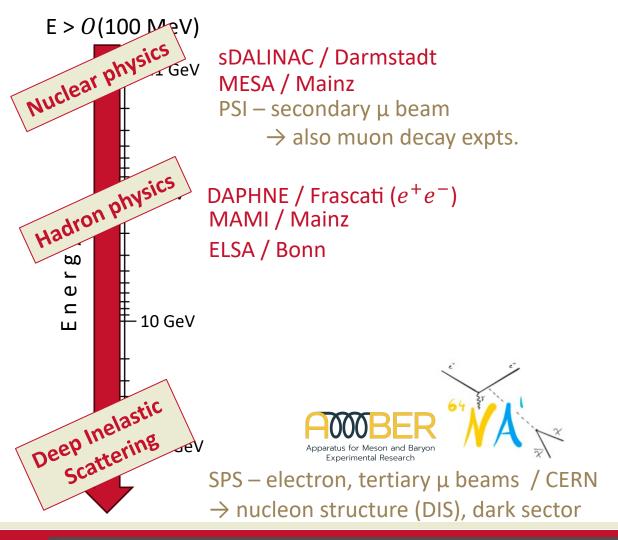


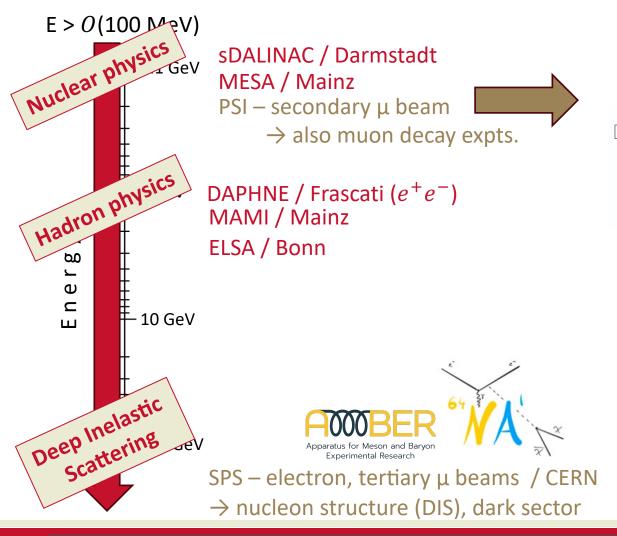


Electron/Muon scattering (DA, MZ, SPS)

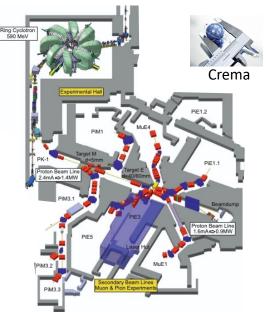

→ Form factors, structure functions

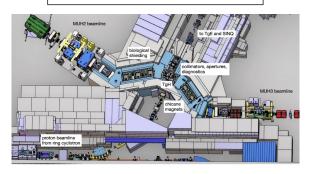



- Photon beam lines (BN, DA, MZ)
 - → Baryon spectroscopy, polarizabilities

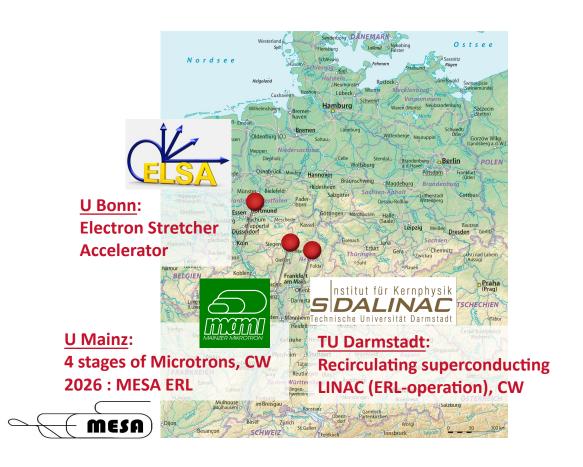


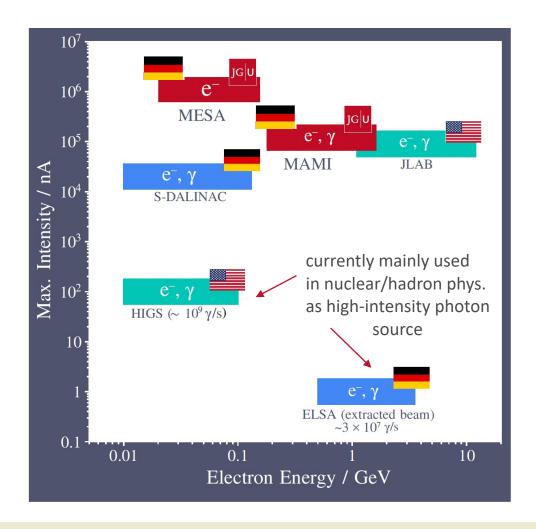
- Low-energy muon beam lines (PSI)
 - \rightarrow LFV, muonic atoms, μp scattering

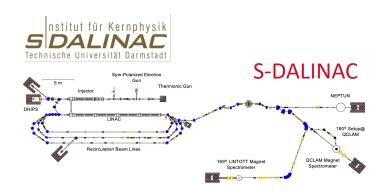




PSI proton cyclotron with secondary beam lines: μ rate $O(<100 \text{ MeV/c}) \rightarrow$ most intense continuous low momentum muon beam in the world up to few x 10⁸ μ /s

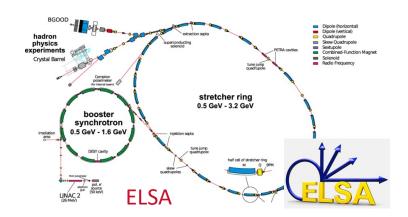

Klaus Kirch (Wed Plenary)




High Intensity Muon Beamline HIMB project (2029+): New target station and muon beam line

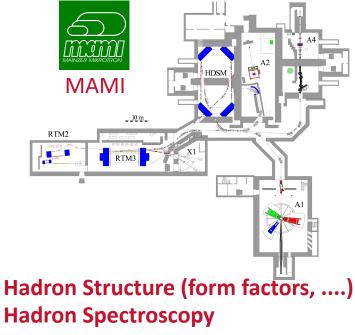
 \rightarrow increase of μ intensity by 2 orders of magnitue

Fixed-Target Electron Accelerators in Germany

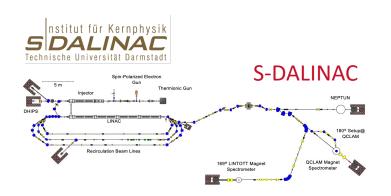


Nuclear (Astro-)physics

Energy-Recoving Linac R&D


- → Electron scattering facilities
- → Photon beam lines

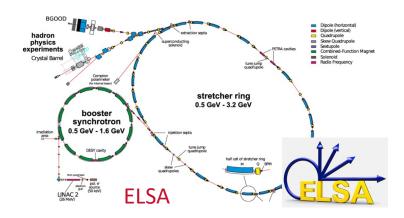
Main Focus on:



Hadron Spectroscopy

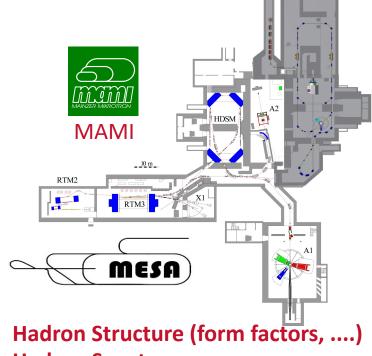
→ Photon beam lines

- Nuclear (Astro-)physics New Physics Searches Energy-Recoving Linac R&D
- **→** Electron scattering facilities
- → Photon beam line



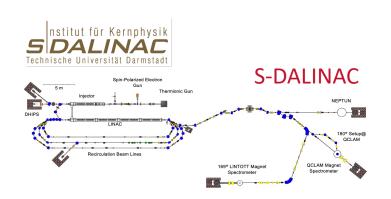
Nuclear (Astro-)physics

Energy-Recoving Linac R&D


- → Electron scattering facilities
- → Photon beam lines

Main Focus on:

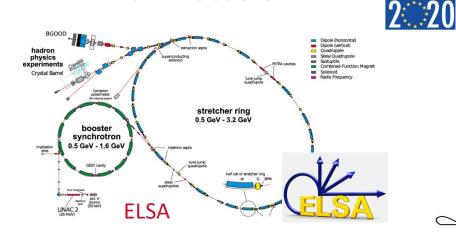
Hadron Spectroscopy


→ Photon beam lines

Hadron Spectroscopy

Nuclear (Astro-)physics New Physics Searches Energy-Recoving Linac R&D

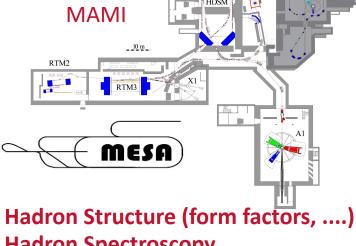
- **→** Electron scattering facilities
- → Photon beam line


Nuclear (Astro-)physics

Energy-Recoving Linac R&D

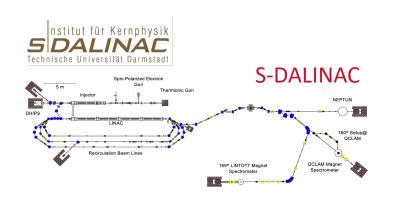
- → Electron scattering facilities
- → Photon beam lines

Main Focus on:


STRONG

Hadron Spectroscopy

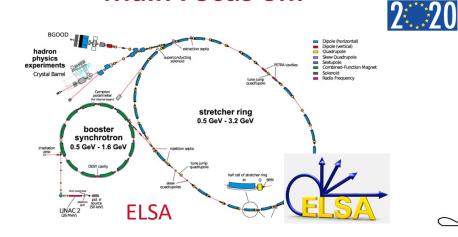
→ Photon beam lines


→ World-class competitiveness demonstrated by successes in obtaining 3rd part funding, most recently in German **Excellence Strategy successes for Bonn and Mainz**

Hadron Spectroscopy

Nuclear (Astro-)physics New Physics Searches Energy-Recoving Linac R&D

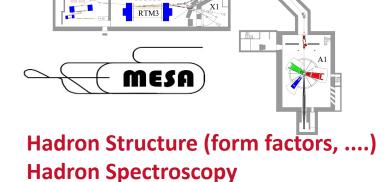
- **→** Electron scattering facilities
- → Photon beam line



Nuclear (Astro-)physics

Energy-Recoving Linac R&D

- **→** Electron scattering facilities
- → Photon beam lines


Main Focus on:

Hadron Spectroscopy

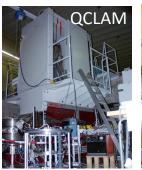
→ Photon beam lines

→ World-class competitiveness demonstrated by successes in obtaining 3rd part funding, most recently in German Excellence Strategy successes for Bonn and Mainz

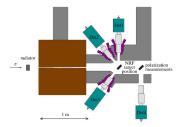
Nuclear (Astro-)physics New Physics Searches Energy-Recoving Linac R&D

- **→** Electron scattering facilities
- → Photon beam line

MAMI

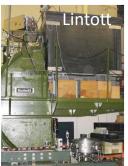

STRONG

Nuclear (Astro-)Physics at the S-DALINAC

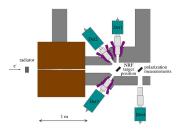

Electron and Photon beams:

- Lintott high resolution spectrometer
- QCLAM coincidence spectrometer for electron scattering
 - high acceptance w. possibility to operate under 180°
 - commissioning of (e,e' γ) electrophotoproduction set-up DAGOBERT B.Hesbacher et al., NIM A 1078, 170574 (2025)
 - program launched for electrofission studies
- Neptun tagged photon beam
- DHIPS low energy, high intensity photon beam
 - Role of chiral two-body currents in light nuclei: ⁶Li, ¹⁰B, ¹⁴N

Darmstadt High Intens. Photon Setup (**DHIPS**)

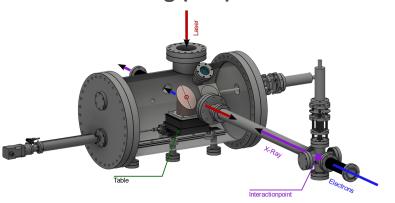


Nuclear (Astro-)Physics at the S-DALINAC


Electron and Photon beams:

- Lintott high resolution spectrometer
- QCLAM coincidence spectrometer for electron scattering
 - high acceptance w. possibility to operate under 180°
 - commissioning of (e,e' γ) electrophotoproduction set-up DAGOBERT B.Hesbacher et al., NIM A 1078, 170574 (2025)
 - program launched for electrofission studies
- Neptun tagged photon beam
- DHIPS low energy, high intensity photon beam
 - Role of chiral two-body currents in light nuclei: ⁶Li, ¹⁰B, ¹⁴N

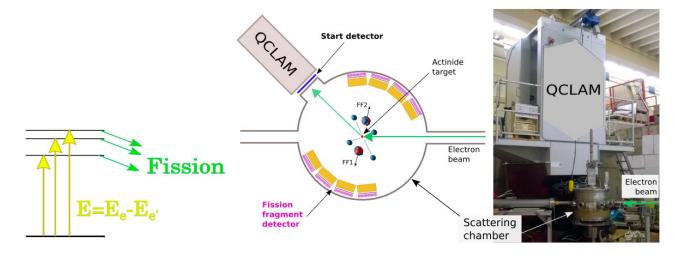
Darmstadt High Intens. Photon Setup (**DHIPS**)


First demonstration of Energy-Recycling in a multi-turn Energy-Recovery LINAC (ERL) (2022) F.Schließmann et al., Nat. Phys. 19, 597 (2023). - >99% energy recycling achieved at high energy nature physics ♣ 2x acc. = CTA Realization of a multi-turn energy recovery accelerator ert Pietralla 🚭 , Manuel Dutine 🚭 , Marco Fischer 🖼 ,

Future Directions S-DALINAC @ Darmstadt

Development of ERL operation for photon beams

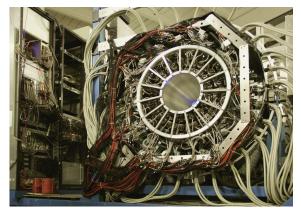
Artificial γ–ray beams from Laser-Compton
 Backscattering (LCB) in multi-turn ERL operation



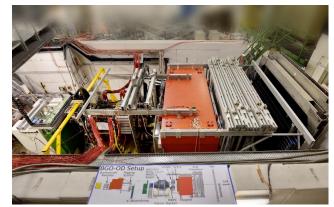
- Possible future: DICE (Darmstadt Individually-Circulating Compact ERL)
 - complementary to MESA
 - further requirements of community

New electrofission setup "DEFERA" for the S-DALINAC

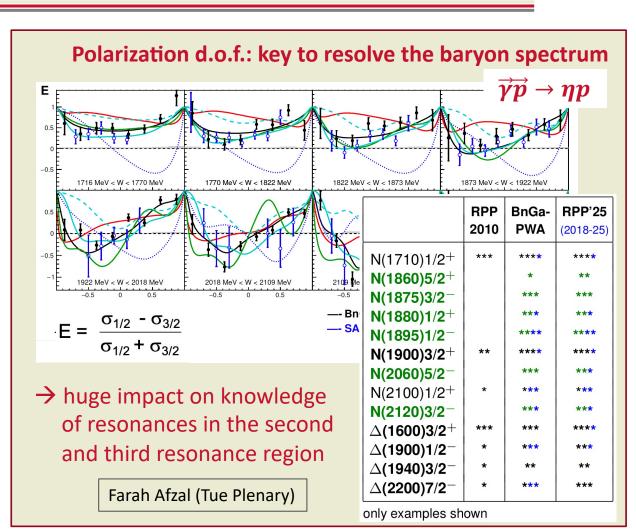
→ new information on properties of transruranium actinides that provide constraints for the fission cycle of the r-process of nucleosynthesis in neutron star mergers


- use of electrons to excite the nucleus
- excited states decay promptly via fission
- **Coincidence** of scattered electrons and fission fragments
- funding approval for DEFERA in Jan. 2025; set-up started

Photon-induced Baryon Physics at ELSA

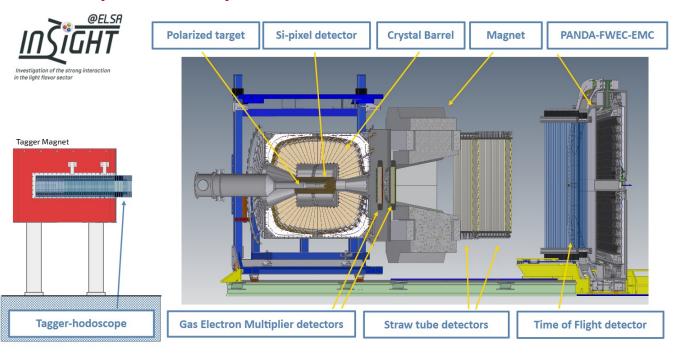


Photon beam (linear & circular polarization):


- CB-ELSA 4π detector + TAPS + polarized target
 - Double polarization experiments: $\vec{\gamma}\vec{p} \to \pi^0 p, \eta p, \pi^0 \pi^0 p, \dots$
 - Full kinem. coverage of asymmetries Σ , E, G, H, ...
- BGOOD detector (charged final states)
 - BGO 4π calorimeter combined with forward spectrometer
 - Strangeness photoproduction at low momentum transfer and coherent photoproduction off the deuteron

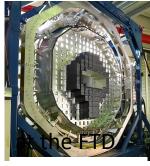
Crystal Barrel/TAPS

BGOOD



Future Directions ELSA @ Bonn

A new experiment as part of the new Cluster of Excellence "Color meets Flavor":



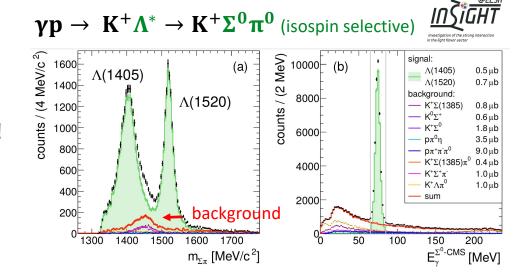
Arrival of the PANDA forward endcap calorimeter in Bonn:

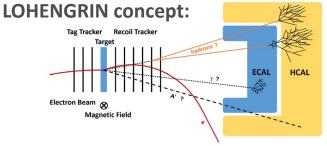
FAIR
Phase 0
Research Program

- \rightarrow Over almost the entire 4π -solid angle:
 - High resolution photon measurements
 - Precise charged particle detectionPolarized beam and polarized target

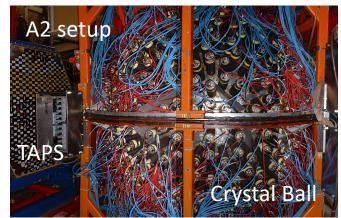
→ unique possiblilities!

Future Directions ELSA @ Bonn

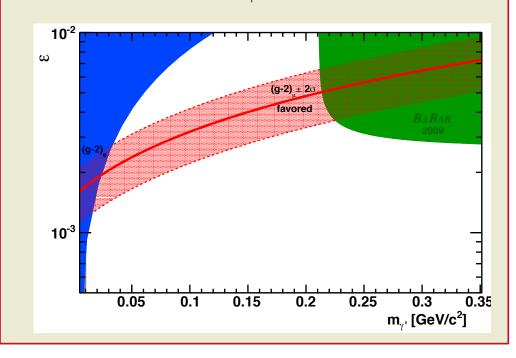

After ELSA shutdown in 2026/27:


- INSIGHT@ELSA: Non-strange and strange baryon spectroscopy: Gain a complete picture of the N^* , Δ^* - baryon spectrum:
 - ⇔ Polarized photoproduction off the polarized proton and neutron! (unambigious PWA not possible without polarization obs.)

Spectrum and properties of Λ^* **,** Σ^* \Leftrightarrow ".. field is starved for data" \Leftrightarrow multi-quark states? molecules? **2-pole structures?**

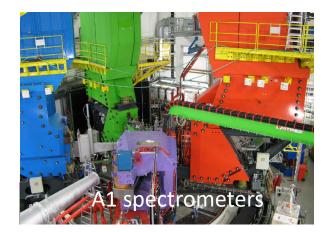

Nucleon Structure and Spectroscopy at MAMI

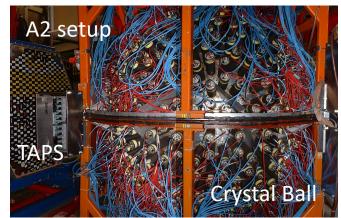
Electron and Photon beams (linear & circular polar.):


- A1 high-resolution spectrometer setup (incl. KAOS)
 - Nucleon electromagnetic form factors
 - Transverse asymmetries as input to neutron skin determination
 - Hypernuclear physics
 - Detection of neutron-rich isotope ⁶H
 - A2: Crystal Ball 4π detector + TAPS + polarized target
 - Baryon spectrum via double-polarization experiments
 - Nucleon Polarizabilities via Compton scattering $\vec{\gamma}\vec{p} \rightarrow \gamma'p'$
 - Meson Tranistion Form Factors as input to HLbL (g-2),

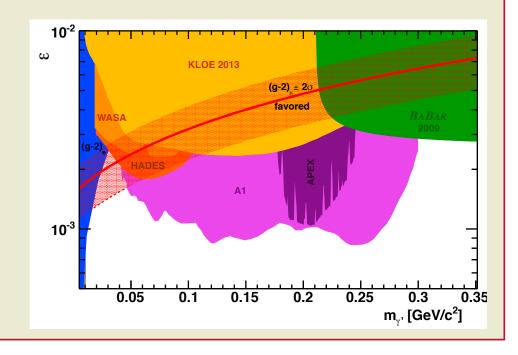
Unique possibilities also beyond Hadron Physics, e.g. Dark Photon γ' searches at A1/MAMI

- Force carrier of a dark sector
- Could explain astrophysical anomalies
- Could explain (g-2)_u puzzle




Nucleon Structure and Spectroscopy at MAMI

Electron and Photon beams (linear & circular polar.):

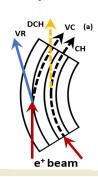

- A1 high-resolution spectrometer setup (incl. KAOS)
 - Nucleon electromagnetic form factors
 - Transverse asymmetries as input to neutron skin determination
 - Hypernuclear physics
 - Detection of neutron-rich isotope ⁶H
 - A2: Crystal Ball 4π detector + TAPS + polarized target
 - Baryon spectrum via double-polarization experiments
 - Nucleon Polarizabilities via Compton scattering $\vec{\gamma}\vec{p} \rightarrow \gamma'p'$
 - Meson Tranistion Form Factors as input to HLbL $(g-2)_{\mu}$

Unique possibilities also beyond Hadron Physics, e.g. Dark Photon γ' searches at A1/MAMI

- Force carrier of a dark sector
- Could explain astrophysical anomalies
- Could explain (g-2)_u puzzle

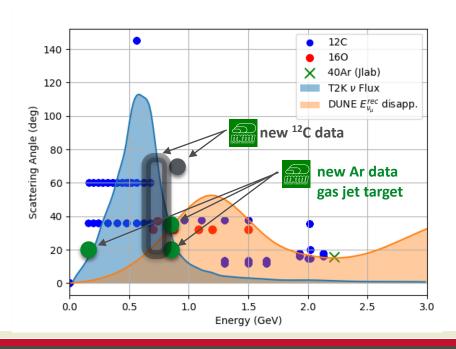
Future Directions MAMI @ Mainz

Continuation of operation of A1 and A2 setup


- A1 high-resolution spectrometer setup
 - Operation of supersonic gas jet target constructed with U Münster (A. Khoukaz) for MAGIX experiment at MESA
 - Improved MAMI energy measurements

A2 Crystal Ball/TAPS setup

- Neutron polarizability program
- Searches for hexaquark d*(2380)
- Positron beam line (X1 area) for channeling experiments


First highly efficient deflection of sub-GeV positrons in bent crystal worldwide!

Electrons for Neutrinos (A1 experiment)

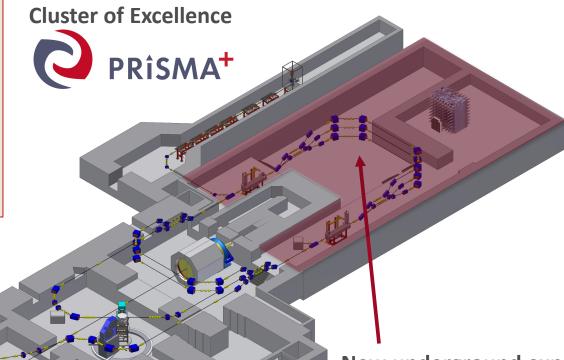
Interpretation of **neutrino experiments** (DUNE,T2K, Hyper-K, Mini-Boone, ...) requires knowledge of **neutrino-nucleus interaction** (¹²C, ¹⁶O, ⁴⁰Ar)

→ Check and calibrate MC-programs via dedicated program of electron-nucleus measurements

Future directions at Mainz: MESA

Mainz Energy-Recovering Superconducting Accelerator

Cluster of Excellence Key parameters MESA: PRîSMA⁺ Max. beam energy 155 MeV Beam current >1 mA (ERL mode) Superconducting cavities New research building (par. 91b GG) Can run in parallel to MAMI Start commissioning 2026


Future directions at Mainz: MESA

Mainz Energy-Recovering Superconducting Accelerator

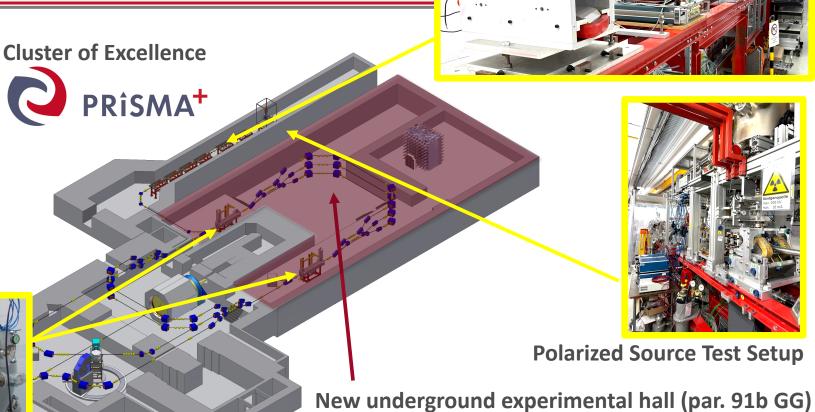
Key parameters MESA:

- Max. beam energy 155 MeV
- Beam current >1 mA (ERL mode)
- Superconducting cavities
- New research building (par. 91b GG)
- Can run in parallel to MAMI

Start commissioning 2026

Future directions at Mainz: MESA

Normal conducting LINAC


Mainz Energy-Recovering Superconducting Accelerator

Key parameters MESA:

- Max. beam energy 155 MeV
- Beam current >1 mA (ERL mode)
- Superconducting cavities
- New research building (par. 91b GG)
- Can run in parallel to MAMI
- Start commissioning 2026

Cryomodules successfully tested

MESA Experiments

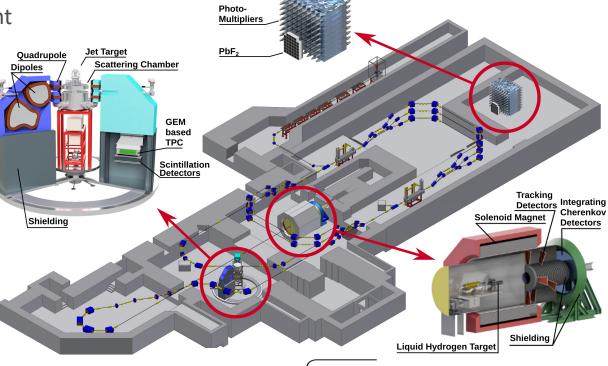
DarkMESA

Beam dump experiment

Direct detection of light dark matter

PbF₂ and lead glass Cerenkov calorimeter

Staged approach


MAGIX experiment

Operated in ERL mode of MESA

Double-arm spectrometers

Internal gas target experiment

 Gas jet target commissioned in 2017/18

P2

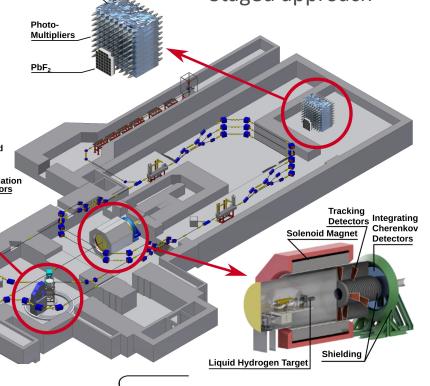
- Extracted beam mode
- Parity violation experiment
- 10²² Electrons / a
- $\sin^2 \theta_{
 m W}$ and neutron skin

MESA Experiments

MAGIX

Jet Target

Scattering Chamber


DarkMESA

- Beam dump experiment
- Direct detection of light dark matter
- PbF₂ and lead glass Cerenkov calorimeter
- Staged approach

MAGIX experiment

- Operated in ERL mode of MESA
- Double-arm spectrometers
- Internal gas target experiment
- Gas jet target commissioned in 2017/18

P2

- Extracted beam mode
- Parity violation experiment
- 10²² Electrons / a
- $\sin^2 \theta_{
 m W}$ and neutron skin

MESA Experiments

MAGIX

Scattering Chamber

MAGIX experiment

- Operated in ERL mode of MESA
- Double-arm spectrometers
- Internal gas target experiment
- Gas jet target commissioned in 2017/18

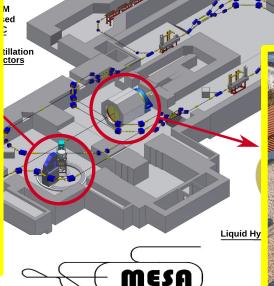
- Beam dump experiment
- Direct detection of light dark matter
- PbF₂ and lead glass Cerenkov calorimeter
- Staged approach

Photo-

2 superconducting solenoid

MESA Expe

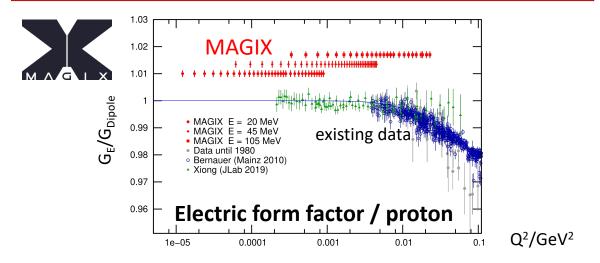
Cluster of Excellence


DarkMESA

- Beam dump experiment
- Direct detection of light dark matter
- PbF₂ and lead glass Cerenkov calorimeter
- Staged approach

MAGIX experiment

- Operated in ERL mode of MESA
- Double-arm spectrometers
- Internal gas target experiment
- Gas jet target commissioned in 2017/18

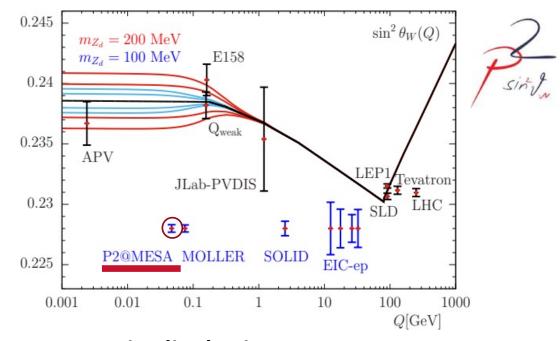


2 superconducting solenoid

Precision Nuclear/Hadron/Physics at MAGIX and P2

Operation of ERL beam with light internal target

→ novel technique in nuclear / particle physics



MAGIX – a versatile electron scattering experiment

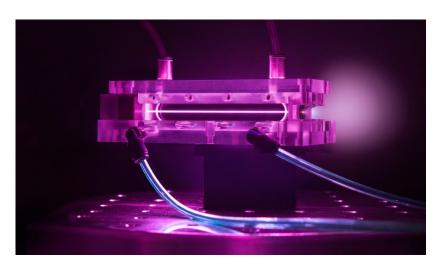
- Structure of nucleons and nuclei
- Investigation of few-body systems
- Nuclear astrophysics
- Dark sector searches (dark photons, axions)

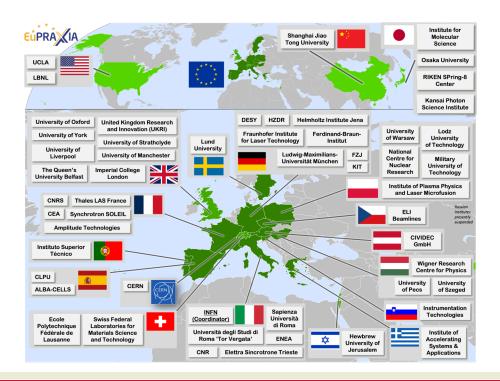
Precision test of the SM via determination of $sin^2\Theta_W$

→ sensitivity from Dark Photons up to 40 TeV BSM

- Longitudinal spin asymmetry on H target
- Extraction of ¹²C weak charge ¹²C target
- Sensitivity to neutron skin from Pb target

Conclusions


- European lepton facilities at the forefront of research in nuclear/hadron/particle physics
 - → Most intense continous low-energy muon beam @ PSI
 - → Substantial progress in knowledge of baryon spectrum (Bonn, Mainz)
 - → investigation of proton structure at all levels, from proton size to internal structure (PSI, Mainz, SPS)
- Upgrades of exisiting facilities and new accelerator projects
 - → New MESA accelerator @ Mainz
 - → High Intensity Muon Beam line @ PSI
 - → More far future: LHeC project for CERN (demonstrator facility PERLE@IJCLab)
- Europe preparing for the break throughs in future accelerator technology
 - → Multi-turn ERL operation @ sDALINAC and operation with gas jet target @ MESA
 - → Usage of AI in accelerator development
 - → Plasma acceleration (European EuPRAXIA consortium)


The future: Plasma Acceleration

EUPRAXIA is the first European project that develops a dedicated particle accelerator research infrastructure **based on novel plasma acceleration** concepts **driven by innovative laser and linac technologies**.

- 1. Building a facility with very high field plasma accelerators, driven by lasers or beams (1 100 GV/m field)
- 2. Producing particles and photons to support several urgent and timely science cases
 - Consortium of 54 institutes (18 countries)
 - Included in ESFRI road map
 - Commissioning of EuPRAXIA@StartLab (Frascati) 2029

