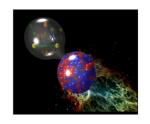


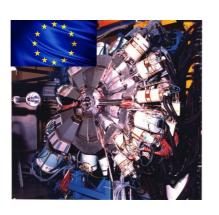
Advancements in Gamma-ray Spectroscopy: Expanding Sensitivity and Experimental Capabilities


Daniele Mengoni
Dept. Physics e Astronomy, Università di Padova & INFN Padova

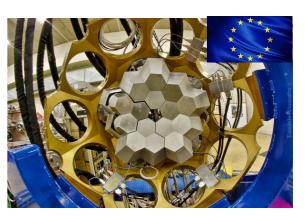

European Conference on Nuclear Physics 21- 26 Sept, 2025 – Caen, France

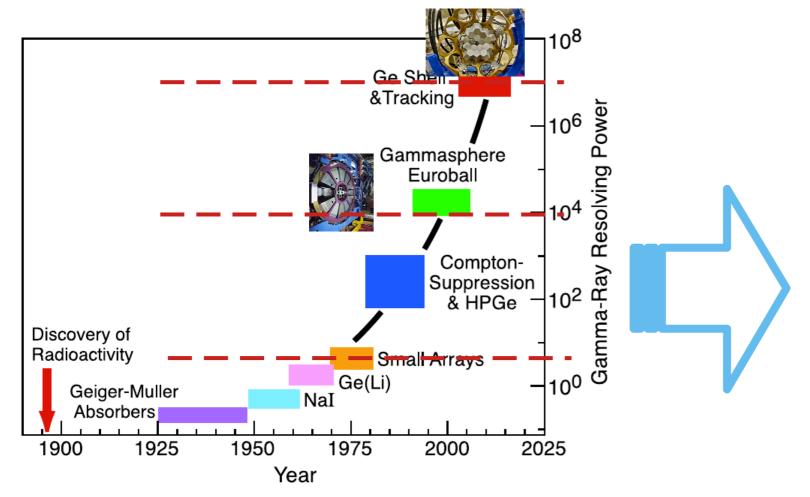
Outlook

- Introduction
- Technological leap
- Science cases (selec)
- Conclusions



Nuclear Structure (t)rail



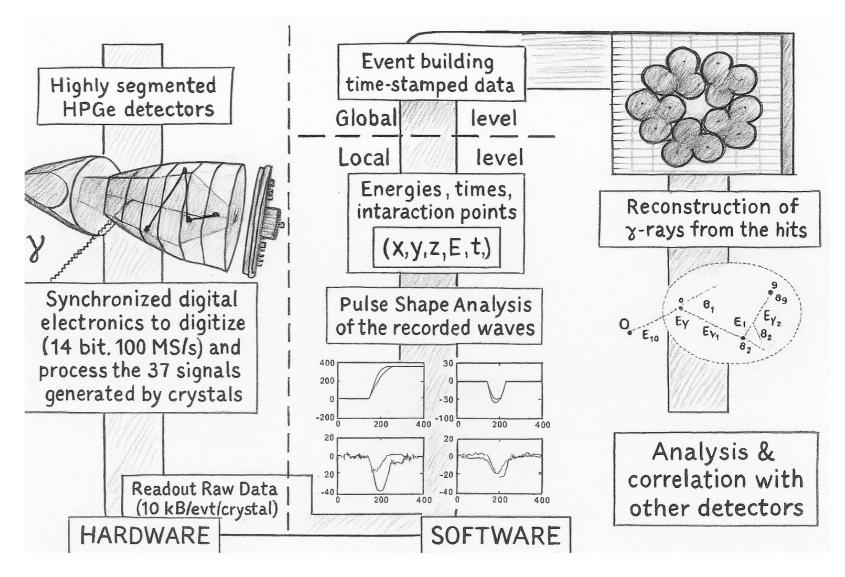

1990s

~2000

~2005

2010

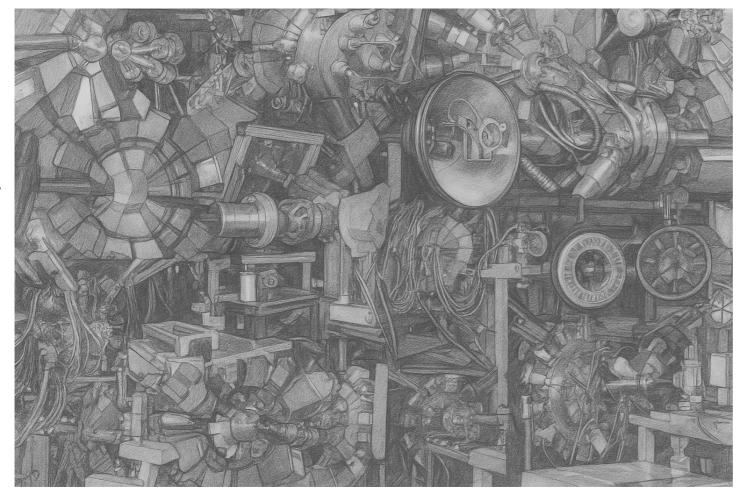
Technological leap leading to γ-ray tracking


- Outstanding sensitivity for lifetime measurement (~Ψ)
- Reduced minimum
 detectable limit σ (~E)
- E, Ψ ←→ ℋ: Coherent description of nuclear many body complex system and nuclear matter
- ■... but at a price

 $\sim \sigma_{\theta}$ (relatively fast moving ions)

price to pay: complexity and cost

- ■6660 high-resolution digital electronics channels
- High throughput DAQ / computational resources load
- Pulse Shape Analysis → position sensitive operation mode
- γ-ray tracking algorithms → maximum efficiency and P/T
- Lots of other stuff we are still learning ..

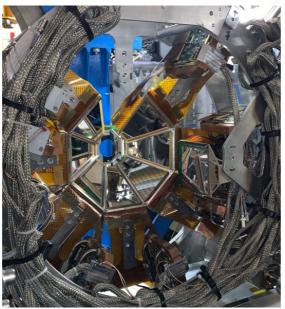


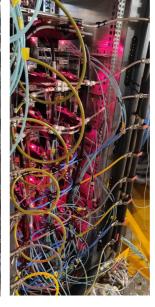
Higher sensitivity in:

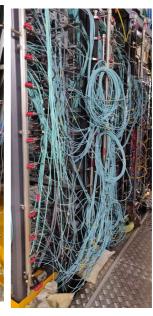
- L.Corradi, Thursday NS13 Cross section: ~40 nb
 - Lifetime (

 - Polarization: factor 10 gain
 - Angular distribution

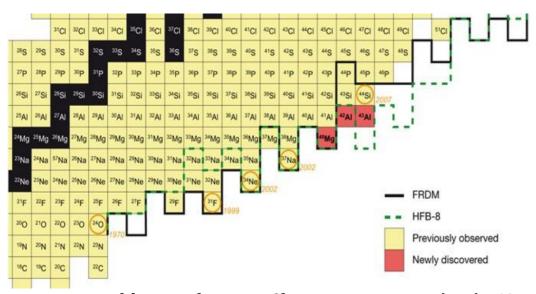

Complementarity is key: factorized the sensitivity

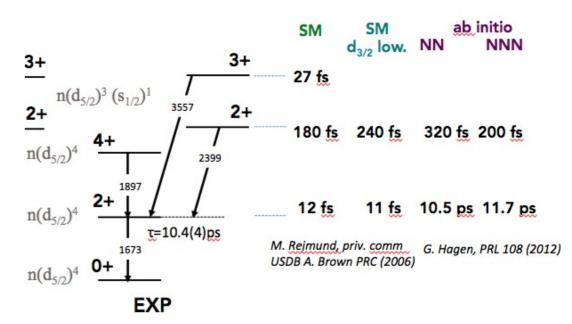



In modern γ-ray spectroscopy, complementary instrumentation (magnetic spectrometers, particle and neutron array, high-efficiency scintillators, plunger etc etc) is key for challenging measurements at the limit of measurability



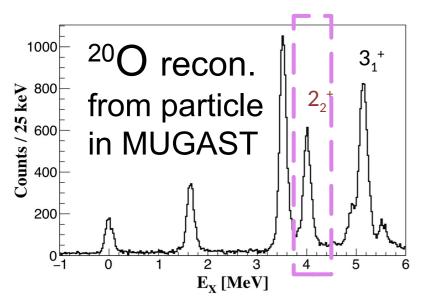
AGATA+MUGAST+VAMOS setup

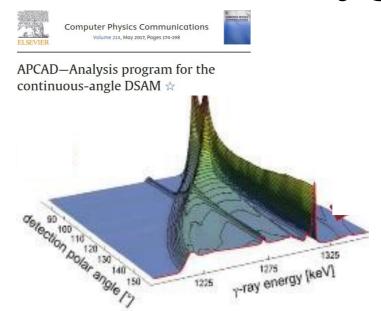


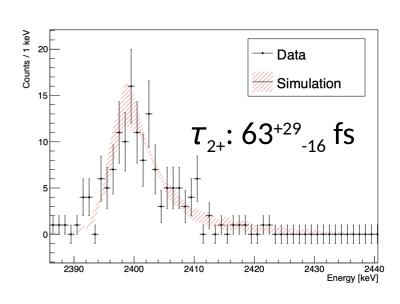

- ■1st AGATA campaign with ISOL beam
- ■Setup guarantees the angular resolution of AGATA ~1 deg

M.Assié et al., "MUGAST-AGATA-VAMOS campaign: setup and performaces" NIMA 2021 DM et al. "Advances in nuclear structure via charged particle reaction with AGATA" EPJA 2023

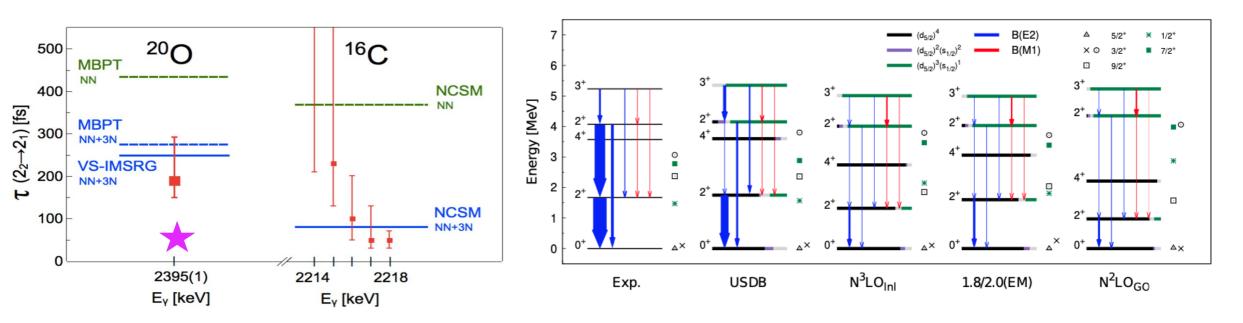
n-drip line: the oxygen anomaly


Interpreted by 3N forces effect on GS energies in ²⁴O T.Otsuka et al., PRL 105(2010)




- neutron-rich nuclei, the neutron drip line evolves regularly from light to medium-mass: yet 240 is the last boungd system
- \blacksquare Microscopically 3N repulsion: constrain relative decomposition of $s_{1/2}$ and $d_{3/2}$ in n-rich oxygen
- Lifetime measurements of 2_2^+ and 3_1^+ in 20 O by direct transfer: 19 O(d,p γ) + DSAM
- Probe the 3-body interaction: 2_2^+ , 3^+ sensitive to NNN
- Pioneering measurement: $\tau(2_2^+) = 150^{+80}_{-30}$ fs (M.Ciemala et al, PRC2020 (R))

Role of 3-body forces in Oxygen isotopes



- Clean (d,p) binary reaction to constrain the excitation energy of the heavy partner
- Triple coincidences: <u>reconstructed entry point</u> (MUGAST) through transfer reaction to avoid top feeding + <u>continuous-angle line shape</u> (AGATA)+ <u>channel selection</u> (VAMOS)
- Lifetimes measured significanlty shorter than theoretical predictions for the 2+
- First lifetime measurement in the tens of femto-sec. scale (DSAM) using transfer reaction in inverse kinematics

Increase in sensitivity and physics results

- Shorter lifetime for the 2⁺, confirms the role of the 3-body contribution
- Energies well described
- $\blacksquare 2^{+}_{2} \rightarrow 2^{+}_{1}$: B(E2) overall underestimated of order of magnitude, better for the B(M1)
- Relative good agreement on the occupancy for all state between the USDB and the *ab-initio*

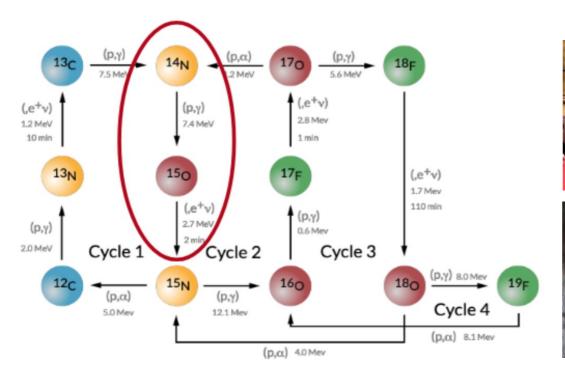
I.Zanon et al., Phys. Rev. Lett. 131 (2023) 262501 M. Ciemala_PhysRevC.101 (2020) 021303 (R)

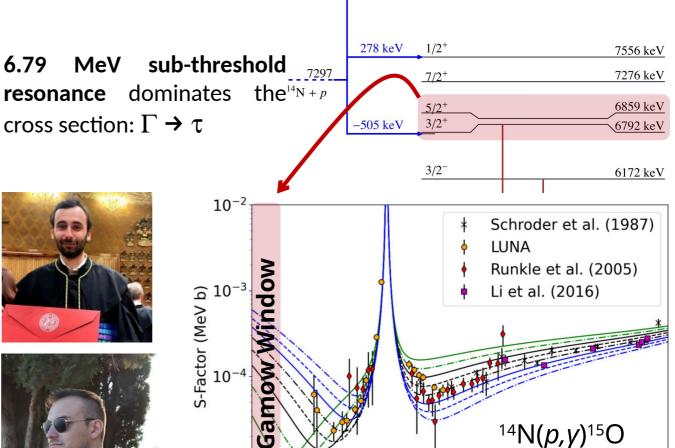
AGATA @ LNL, 2021 onward

- Configuration facing the optical center of the PRISMA magnetic spectrometer
- Integrated with various auxiliary detectors

 F.Galtarossa, Monday NS5

J.J.Valiente Dobón, R.Mengazzo, A.Goasduff et al., NIMA 1049 (2023) 168040




8284 keV

$^{14}N(p,\gamma)^{15}O$ Reaction

CNO Cycle

 $^{14}N(p,\gamma)^{15}O$ is the **slowest reaction** in the cycle: evolution of massive stars, metallicity, ..

 10^{-5}

0.0

0.1

0.2

0.3

 $_{1057}$ keV $_{1057}$ keV

0.5

0.4

CoM Energy (MeV)

State of the Art

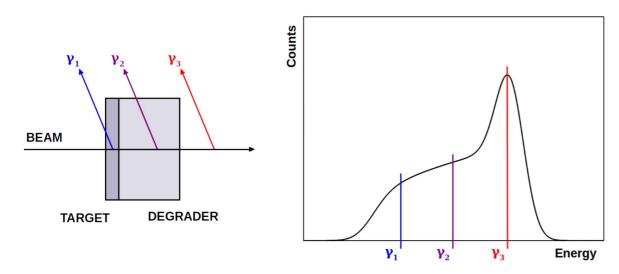
0.6

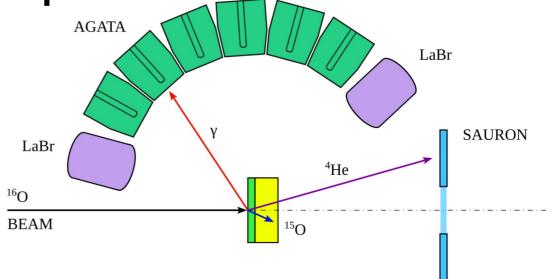
0.7

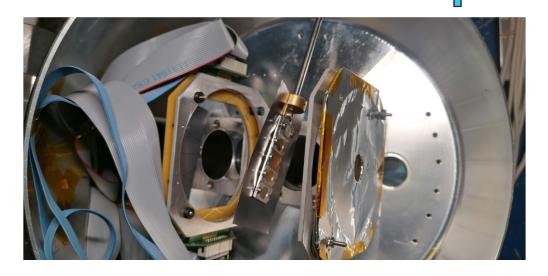
0.8

Existing measurements in literature

Year	Facility	τ (fs)	Author and Reference
2001	TUNL	$1.60^{+0.75}_{-0.72}$	Bertone et al. [30]
2004	RIKEN	$>0.42^{\dagger}$	Yamada $et al.$ [31]
2008	Ruhr-Universität Bochum	< 0.77	Schürmann $et \ al. \ [32]$
2012	INFN - LNL	< 1.0	Michelagnoli [33]
2014	TRIUMF	< 1.8	Galinski $et \ al. \ [34]$
2021	University of Notre Dame	0.6 ± 0.4	Frentz $et al. [16]$

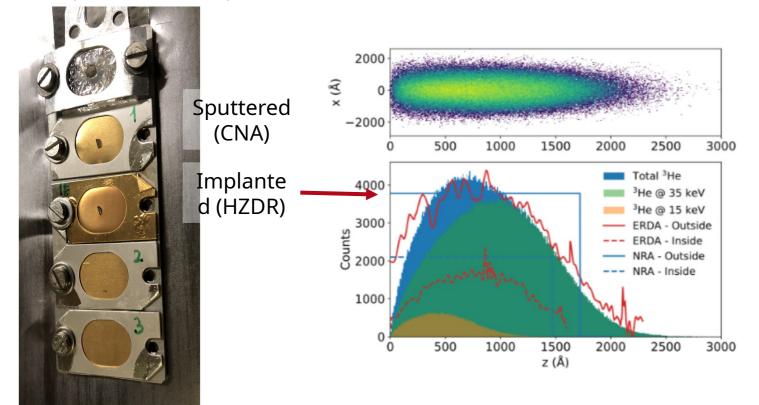

- Moslty DSAM (1 Rel. Coulex), few HPGe (one displaced at different angle) or NAI(TI)
- ■Direct measurements (p+N) might suffer by the not so well controlled implantation on N on a backing (Ta.)
- ■Indirect measurements needed to control the 3He profile
- Already performed with AGATA demonstrator: problem due to the ${}^{14}N(d,n){}^{15}O$ reaction channel (in inverse kinematics) which did not allow a precise kinematic reconstruction: insufficient sensitivity


Our setup


¹⁶O(³He, ⁴He)¹⁵O @ 50 MeV

- ¹6O beam impinged on two types of ³He targets
- 4He recoils detected with the **SAURON** (DSSD) array
- AGATA at **40 160 deg** for the γ -rays
- **AmBe** source with **Fe** for constant energy calibration

Doppler Shift Attenuation Method



³He Targets

Two different types of **He targets** in **Au** backing were used:

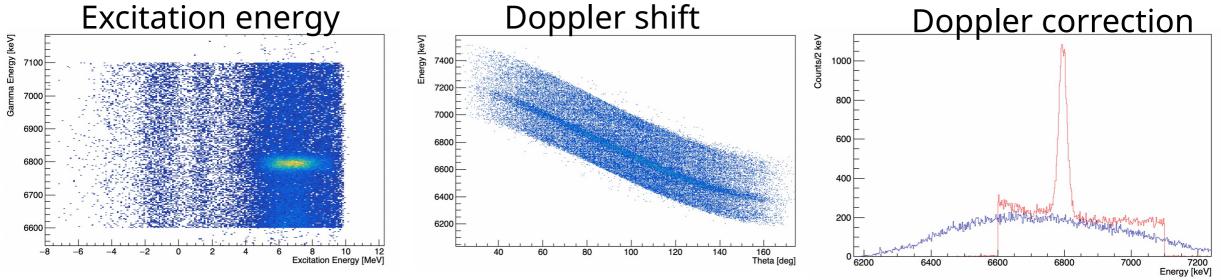
- Sputtered ones produced at CNA (Seville) ~ 2.2 × 10¹⁸ at/cm²
- Implanted ones produced at HZDR (Dresden) $\sim 4.7 \times 10^{17}$ at/cm²

Eur. Phys. J. A https://doi.org/10.1140/epja/s10050-025-01590-w THE EUROPEAN PHYSICAL JOURNAL A

Regular Article - Experimental Physics

Comparing ³He content in magnetron sputtered and implanted targets for nuclear studies

E. Pilotto^{1,2}, F. J. Ferrer^{3,4}, S. Akhmadaliev⁵, A. Fernández⁶, A. Gadea⁷, J. Gómez Camacho^{3,4}, D. Hufschmidt⁶ M. C. Jiménez de Haro⁶, E. Masha⁵, F. Munnik⁵, M. Osswald⁸, D. Piatti^{1,2}, J. Skowronski^{1,2,8}, S. Turkat^{1,2}, J. J. Valiente-Dobón⁷


- Dipartimento di Fisica dell'Università di Padova, I-35131 Padova, Italy
- ² Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova, Italy
- ³ Departamento de FAMN, Facultad de F\(\text{fsica}\), Universidad de Sevilla, Apartado 1065, E-41080 Sevilla, Spain
- ⁴ Centro Nacional de Aceleradores (Univ. Seville, J. Andalucía CSIC), Av. Tomas Alva Edison 7, 41092 Seville, Spain
- ⁵ Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany
- 6 Instituto de Ciencia de Materiales de Sevilla, CSIC-Univ. Seville, Avda., Américo Vespucio 49, 41092 Seville, Spain
- 7 Instituto de Física Corpuscular, CSIC-Univ. Valencia, E-46980 Paterna, Spain
- 8 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, 01069 Dresden, Germany
- ⁹ Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, I-35020 Legnaro, Italy

Pilotto et al. (2025) Eur. Phys. J. A 61:117

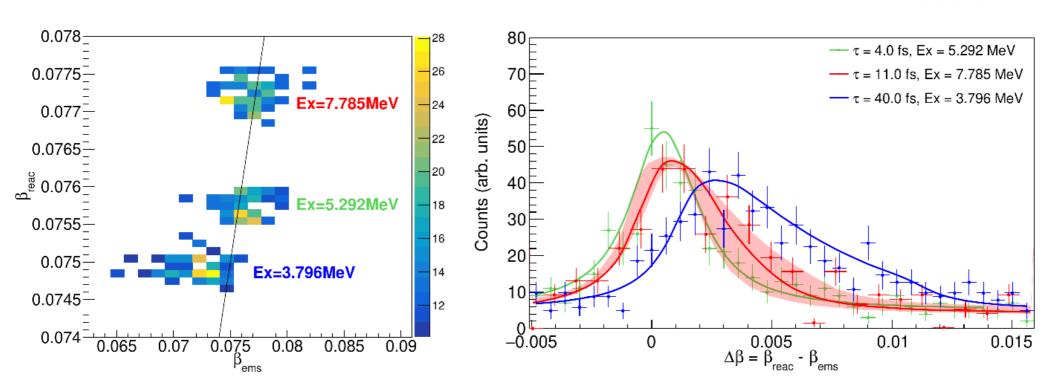
Table 1 ³He areal density calculated by NRA and ERDA

³ He areal density		
NRA [10 ¹⁵ at/cm ²]	ERDA [10 ¹⁵ at/cm ²]	
478 ± 35		
470 ± 34	445 ± 45	
224 ± 17	143 ± 14	
2221 ± 153		
2206 ± 152		
1732 ± 120		
	NRA $[10^{15} \text{ at/cm}^2]$ 478 ± 35 470 ± 34 224 ± 17 2221 ± 153 2206 ± 152	

6792 keV state observables

- Meticulous data presorting is a prerequisite to tackle fs lifetime
- Neutron correction, time oscillation, calibration of the detectors and optimization of the positions.
- Evidence of the 6792-keV transition to the gs both in the excitation energy and gamma-ray spectrum. Other known states equally well populated (later used for calibration)
- How to extract a possibly sub-fs lifetime?

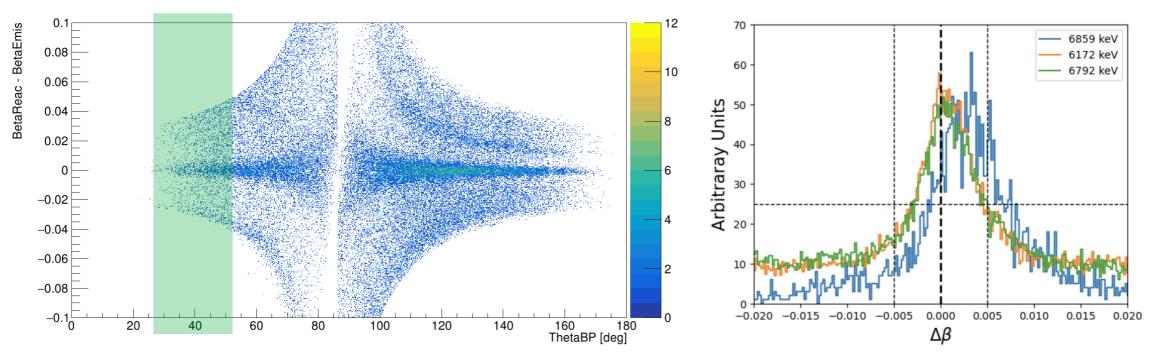
Emission vs Reaction velocity


nature communications

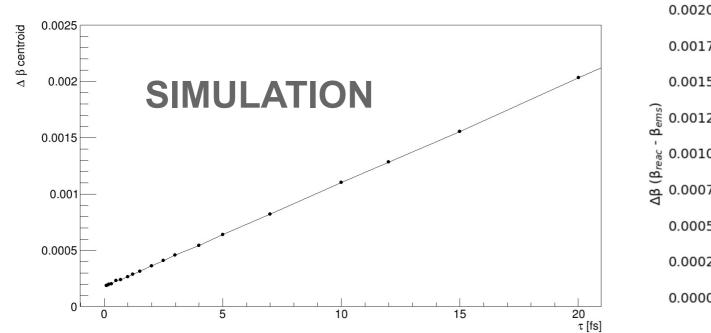
nature > nature communications > articles > article

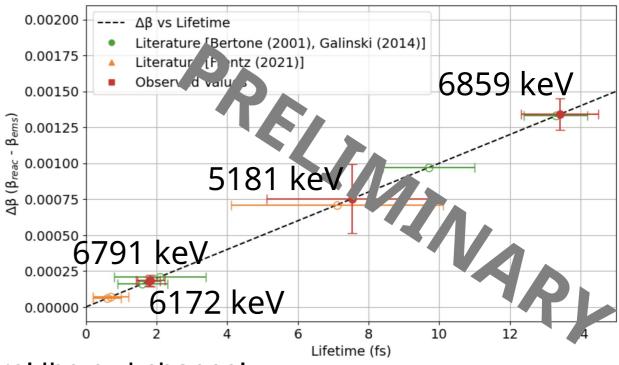
Search for ²²Na in novae supported by a novel method for measuring femtosecond nuclear lifetimes

Chloé Fougères ☑, François de Oliveira Santos ☑, Jord


C.Fougeres Friday 12⁴⁰

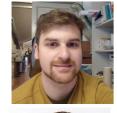
- Classical novae important ²⁶Al, ²²Na sources, but ²²Na undetected
- 22Na(p,γ)²³Mg reaction rate highly uncertain
- Dominated by ²³Mg 7785 keV resonance state lifetime
- Proposed method: Particle-particle correlations + velocity-difference profiles
- Measure **femtosecond** ²³**Mg lifetimes**, constrain ²²Na novae yields


 τ = 10.2(26) fs allow to set detectable limit for new space mission


DSAM analysis

- \blacksquare β_{reac} at reaction time using **DSSD reconstruction**
- \blacksquare β_{emiss} emission obtained from the centroid energy in **AGATA**
- \blacksquare **Δβ** of the two **centroids allows to extract τ**: the larger the displacement the longer the lifetime. However, what's the necessary level of precision and accuracy?

Lifetime: ~fs measurement **NEW** attempt



- ■¹6O(³He,⁴He)¹5O new reaction chosen to control the exit channel
- $\blacksquare \Delta \beta$ method between reaction and emission velocity. Calibration with known state lifetime used to calibrate the simulations.
- ■Preliminary results are promising and close to Bertone and Galinski, far from Frentz
- => High sensitive method!

Conclusion and perspectives

- Technological leap is in mutual dependence with scientific findings
- Increase in sensitivity, e.g. ~fs lifetime and ~nb cross section and more, is key to continue exploring nuclear physics and astrophysics

moslty MSc, PhD, Post doc

more than 10 nationalities

