

Saikumar Chinthakayala

Mikael Reponen, Iain Moore, Lucia Caceres*, Pierre Delahaye* and the IGISOL group

University of Jyväskylä, Department of Physics, Accelerator Laboratory, PO Box 35, FI-40014 University of Jyväskylä, Finland *Grand Accélérateur National d'Ions Lourds (GANIL), Caen, France

Contact: saikumar.chinthakayala@ganil.fr

Release Properties of Ag, Pd and Sn in an Upgraded Hot Cavity Laser Ion Source

Motivation

- Initially dedicated to the fast, efficient extraction and study of 94m Ag (N=Z), $t_{1/2}$ (21+)= 0.39 s, achieved in 2023
- Mass and laser spectroscopy data on short-lived, neutrondeficient isotopes in this region is scarce due to the challenges of producing and efficiently extracting them
- The upgraded inductively heated hot-cavity laser ion source (HCLIS) at IGISOL acheived reasonable extraction efficiency and release time for Sn, Ag, and Pd isotopes, enabling laser spectroscopy and mass measurements near the N=Z line
- Crucial for key nuclear structure concepts like pairing, isospin symmetry, single particle vs collective behaviour

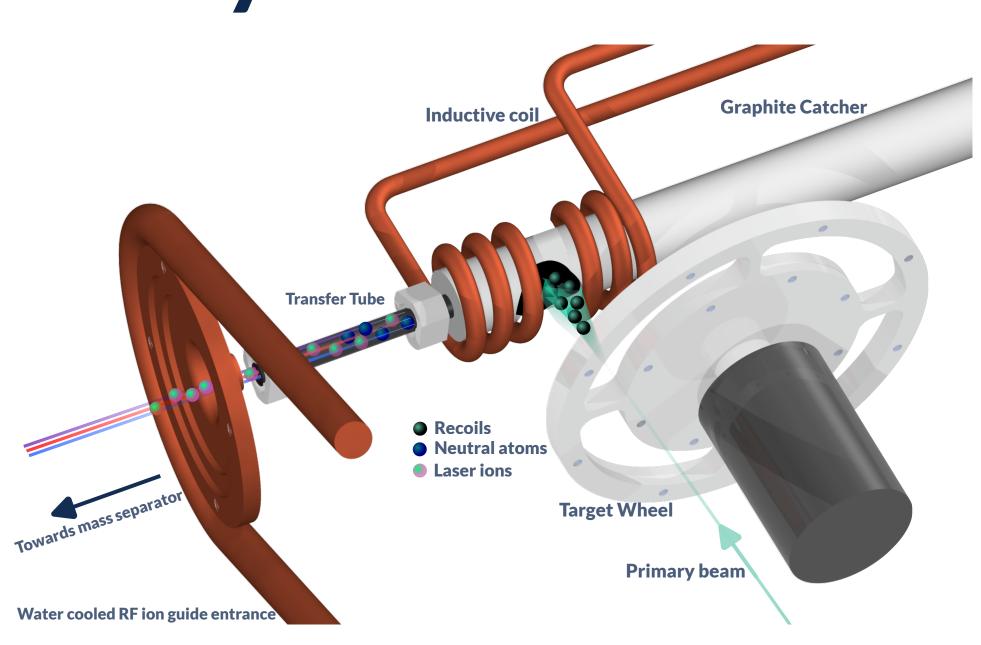


Fig. 1: 3D drawing of hot cavity catcher with various parts illustrated

Design

- Catcher geometry optimized for heavy-ion fusion evaporation reactions ¹, Eg: ⁵⁸Ni(⁴⁰Ca,p3n)⁹⁴Ag
- Inductively heated (<2kW) graphite catcher in Mo crucible²
- Resistive heating for hollow signadur transfer tube
- forming a potential gradient (9 V)
 Integrated target wheel and collimator on a separate
- Platform
 Water cooling for heated components and RF ion guidents
- Water cooling for heated components and RF ion guide entrance
- Highest stable operating temperature ~ 1800 K

Release Tests with Stable Ag

- Implantation of 495 MeV Stable ¹⁰⁷Ag²⁰⁺ beam from K130 cyclotron into graphite catcher
- Neutralization in catcher and effusion into transfer tube
- Resonant three-step laser scheme for Ag used to selectively ionise the atoms³
- Ions via RF guide accelerated to 30 kV before mass separation using dipole magnet (M/ΔM(FWHM) ~ 250)
- Overall efficiency = beam current after dipole magnet/beam current from cyclotron
- Pulsed cyclotron beam is used for extraction time measurement
- ~30% efficiency for 107 Ag; fast extraction time ~ 30 ms

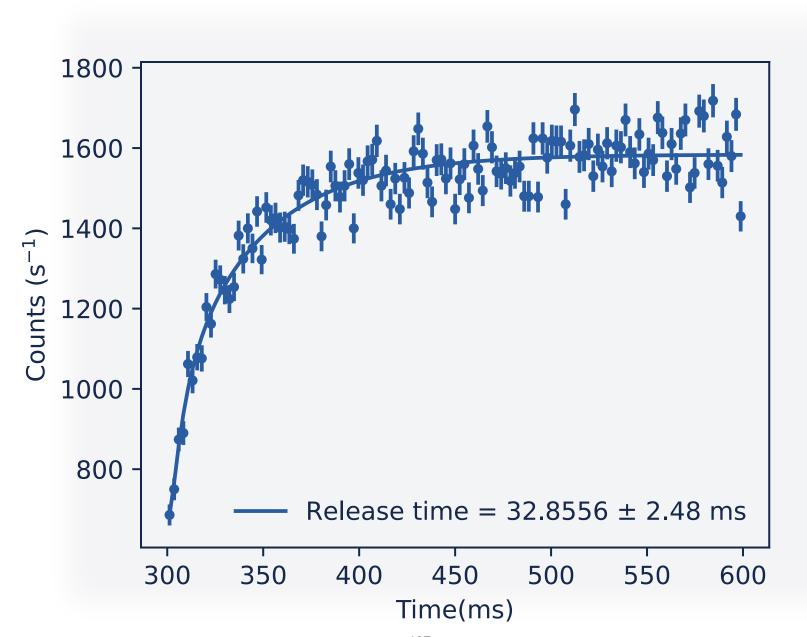


Fig. 2:Rise time curve measured for ¹⁰⁷Ag stable implanted beam in the hot-cavity.

The catcher and tube temperature are approximately 1500 K and 1770 K respectively

In-source Laser spectroscopy of ⁹⁴Ag(N=Z) with MR-ToF MS

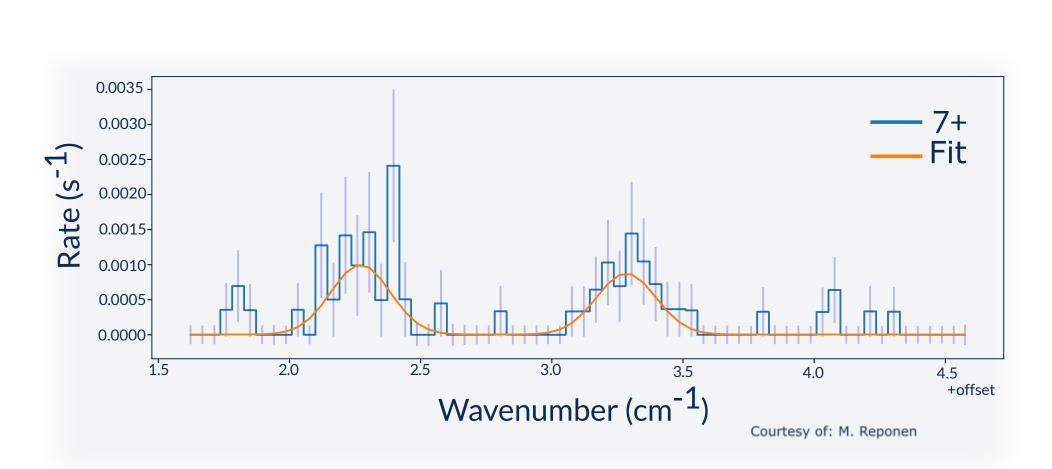


Fig. 3: MR-ToF assisted hyperfine scan of 94 Ag(7+). Both tube and the catcher temperature is about 1300K

Nucleus	Count rate (s ⁻¹)	Half-life
⁹⁴ Ag (7+)	0.03	0.55 s
⁹⁴ Ag (21+)	0.003	0.4 s
¹⁰³ Ag	80000	65.7 min
¹⁰⁴ Ag	75000	69.2 min

Table 1. Count rate for various radioactive Ag isotopes after mass separator with ^{14}N (185 MeV, 300 pnA) $+^{92}Mo$ (125 μm) target and ^{40}Ca (100 pnA, 185MeV) $+^{58}Ni$ (3 μm) target for ^{94}Ag from an experiment conducted in 2025

Release Tests with Stable Sn

- 550 MeV Stable ¹²⁰Sn²³⁺ beam from K130 cyclotron implanted into graphite catcher
- Neutralization in catcher and effusion into transfer tube
- Resonant three-step laser scheme for Sn used to selectively ionise the atoms ⁵
- Ions via RF guide accelerated to 30 keV before mass separation using dipole magnet (M/ΔM(FWHM) ~ 250)
- Detected on a MCP after the mass separator
- ~5% efficiency for ¹²⁰Sn; extraction time < 1 s
- Part of ongoing efforts to study ¹⁰⁰Sn (N=Z)

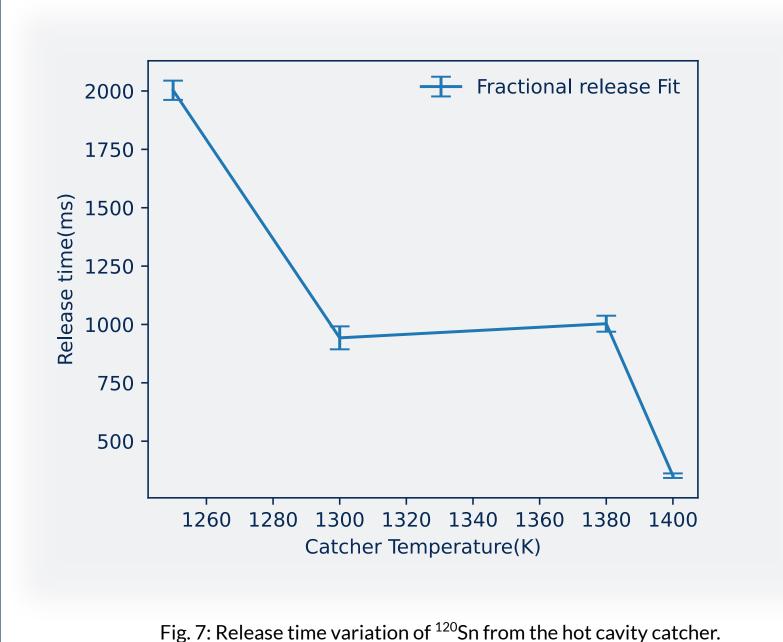
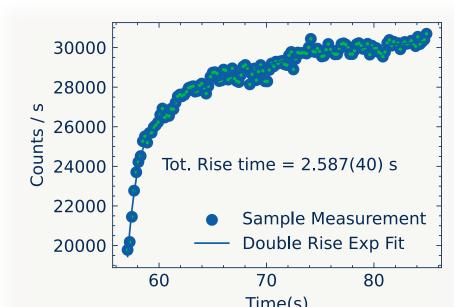
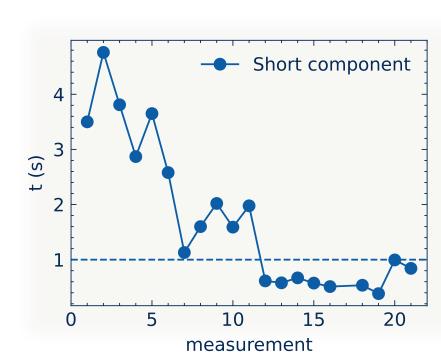



Fig. 7: Release time variation of ¹²⁰Sn from the hot cavity catcher.


Tube temperature is about 1100K

Resonant Laser Ionisation of Pd and Extraction Measurements

- Three step resonant ionization scheme used to ionize Pd atoms
- ¹⁴N (148 MeV, 100pnA) + ⁹²Mo (0.03 mm) for ^{97,98,99,100}Pd used in tuning and optimisation of beam transport & lasers
- 40 Ca (230 MeV, 70 pnA) + 58 Ni (3.3 μ m) for 92,93,94 Pd used for mass measurements in IGISOL MR-ToF MS

- Study of release time at different heating parameters
- Double exponential fit to rise time curves, where the short component corresponds to laser ionisation
- Fig. 4: Double exponential fit to rise time curve for an arbitrary heating parameters

- Threshold heating parameters to obtain release time < 1 s are Induction = 1900 W(~1400K), DC=50.59 A, 9.9 V (~1300K)
 Average total extraction
- efficiency of around 4%
- Fig. 5: Variation of release time with different heating parameters

Mass measurement of ⁹²Pd(N=Z) with MR-ToF MS

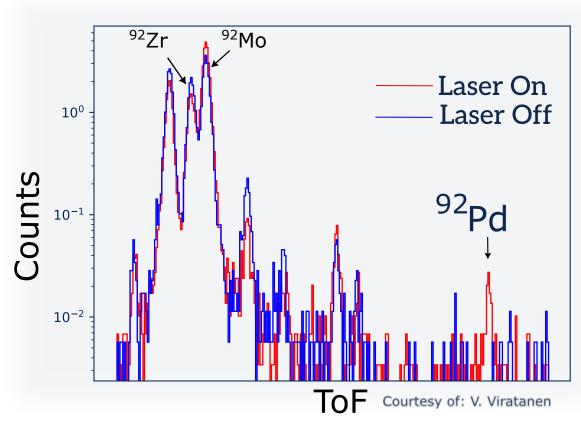


Fig. 6: ToF spectrum from MR-ToF contrasting both laser off and laser on spectra for A=92 nuclei

Nucleus	Count rate (s ⁻¹)	Half-life
⁹⁷ Pd	1800	3.10 min
⁹⁸ Pd	8200	17.7 min
⁹⁹ Pd	30000	21.4 min
⁹⁴ Pd	10	9 s
⁹³ Pd	0.4	1.07 s
⁹² Pd	0.02	1 s

Table 2. Experimental count rate for various radioactive Pd isotopes observed after mass separator

Outlook

- → Modelling effusion using MonteCarlo simulations helps in determing fitting bounds for fractional release curve, test combinations of effusing species and materials
- → COMSOL simulations for DC heating focusing on temperature distribution and potential gradient along the transfer tube
- → Possible In-source laser spectroscopy of ⁹⁴Ag(21+) and mass measurement of ⁹⁴Ag(0+) with improved total extraction efficiency
- → Extraction tests of lanthanides, ceasium and other elements around Sn

References

- [1] T. Kessler et al., Towards on-line production of N= Z ⁹⁴Ag at IGISOL, Nucl. Instr. and Meth. B(2008)
- [2] Reponen, M., et al. "An inductively heated hot cavity catcher laser ion source." Review of Scientific Instruments 86.12 (2015).
- [3] Reponen, M., et al. "Evidence of a sudden increase in the nuclear size of proton-rich silver-96." Nature Communications 12.1 (2021):4596.
- [4] Kron, Tobias, et al. "High efficiency resonance ionization of palladium with Ti: sapphire lasers." Journal of Physics B: Atomic, Molecular and Optical Physics 49.18 (2016): 185003.
- [5] Liu, Yuan, et al. "Laser ion source tests at the HRIBF on stable Sn, Ge and Ni isotopes." NIM B, 243.2 (2006): 442-452.

