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α–decay in the early XXth century

H. Geiger and J.M. Nuttall, The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science 22 (130), 1911.

“Much has been written of the explosive violence with which the
α–particle is hurled from its place in the nucleus. But from the
process pictured above, one would rather say that the α–particle
slips away almost unnoticed.” – R.W. Gurney and E.U. Condon,

Nature 122, 1928.
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Formation of α clusters in dilute neutron–rich matter1

Schematic illustration of the
experimental setup used to probe the

reaction ASn (p, pα)A−4Cd.
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1J. Tanaka et al., Science 371, 6526 (2021).
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Clustering in light and infinite systems

Self–consistent ground–state density of 20Ne.

[J.-P. Ebran et al., Nature 487, 341-344 (2012).]

Critical temperature for the onset of quantum

condensation in symmetric nuclear matter. [G.

Röpke et al., Phys. Rev. Lett. 80 (15), 1998.]
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What about medium and heavy nuclei?
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Woods–Saxon plus spin–orbit mean–field

V (r⃗ , s⃗) = VN (r⃗) + VC (r⃗) + Vso (r⃗ , s⃗)

VN (r⃗) = −V
(0)
N f (r⃗ , r0c , ac )

Vso (r⃗ , s⃗) = −V
(0)
so

1

r
df (⃗r,r0so ,aso )

dr
2L⃗ · s⃗

VC (r⃗) =

∫
ρ
(
r⃗ ′
)

|r⃗ − r⃗ ′|
dr⃗ ′

f (r⃗ , r0, a) =
1

1 + e
r−R
a

Parameters are typically set from single–particle en-
ergy levels, charge radii etc. A mean–field wave-
function, where x = (r⃗ , s⃗), is of the form

ψam (x) = Ra (r)Y
(
ℓa

1
2

)
ȷam (Ω) =

=
1

r
ua (r)

[
iℓaYℓa ⊗ χ 1

2

]
ȷam
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Surface Gaussian interaction

The two–body interaction in relative r and c.o.m. R coordinates is

v
(
r⃗ , r⃗ ′

)
= −v0κ

(
r ′
)
e−

|⃗r−r⃗′|2

b2

[
1 + xce

− (R−R0)
2

B2

]

v0 and b are determined from a fit of the starting mean field.

B = 1 fm so as to not perturb the low–level energy spectrum.

R0 and xc are determined from decay data.

κ
(
r ′
)
=

ρ(0)(r ′)
⟨ρ(r ′)⟩ is a convergence factor that accounts for the screening of the

interaction and prevents the collapse of the nucleus.
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Cluster–Hartree-Fock theory I

The main equations read[
−

ℏ2

2µ
∇⃗2 + Γ(dir) (r⃗)

]
ψam (x) +

∫
d3 r⃗ ′Γ(exc)

(
r⃗ , r⃗ ′

)
ψam

(
x′
)
= εaψam (x)

depending on the direct and exchange terms and densities of the form

Γ(dir) (r⃗) =

∫
d3 r⃗ ′v

(
r⃗ , r⃗ ′

)
ρ
(
r⃗ ′
)

Γ(exc)
(
r⃗ , r⃗ ′

)
= −

∫
d3 r⃗ ′v

(
r⃗ , r⃗ ′

)
ρ
(
r⃗ , r⃗ ′

)
ρ
(
r⃗ ′
)
=

∑
c

v2
c

∑
s

ψ†
cs

(
x′
)
ψcs

(
x′
)

ρ
(
r⃗ , r⃗ ′

)
=

∑
c

v2
c

∑
s

ψ†
cs

(
x′
)
ψcs (x)
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Cluster–Hartree-Fock theory II
One can derive a set of coupled second order radial differential equations

−u′′a (r) +
ℓa (ℓa + 1)

r2
ua (r) +

2µ

ℏ2
[
Va (r) − εa

]
ua (r) = 0

or equivalently an eigenvalue problem

∑
n′

H
(β)

na,n′ad

(
n′
)

a = εad
(n)
a

determined by the Hamiltonian matrix

H
(β)

na,n′a = ℏω
(
2n + ℓa +

3

2

)
+ ⟨βnℓa|Va (r)|βn′ℓa⟩ −

ℏω
2

⟨βnℓa|βr2|βn′ℓa⟩

in terms of a local equivalent potential and the multipole expansion of v
(
r⃗, r⃗′

)

Va (r) = −v0
√
4π

∞∫
0

dr′r′2ρ
(
r′
)
v0

(
r, r′

)
+ v0

∑
c

v2c
uc (r)

ua (r)
(i)ℓc−ℓa

×
∑
L

C
ȷc
1
2

L
0
ȷa
1
2

C
ȷa
1
2

L
0
ȷc
1
2

∞∫
0

dr′ua
(
r′
)
uc

(
r′
)
vL

(
r, r′

)
The HF equations are solved according to the iteration scheme

V (new)
a (r) = (1 − ξ) V (old)

a (r) + ξV (calc)
a (r) , ξ → 1 at convergence
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α–particle formation amplitude & decay width

F0 (R) = ⟨ΨP |ΨDΨα⟩ =
∑
Nα

WNαR
(4β)
Nα0

(R)

The expansion coefficients describe in nucleonic degrees of freedom the geometry of
the problem (angular momentum recoupling, Talmi–Moshinsky brackets) and nuclear
structure details (occupation amplitudes, h.o. radial expansion coefficients). For
superfluid nuclei only states near the Fermi level contribute significantly to WNα . The
decay width follows from the matching of F0 (R) with an outgoing Coulomb wave
expressed in terms of the usual reduced radius ρ and Coulomb parameter χ

Γth (R) = ℏv
[
RF0 (R)

G0 (χ, ρ)

]2
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Example: 216Rn → 212Po+ α (I)
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Example: 216Rn → 212Po+ α (II)
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Conclusions2

We have developed a procedure to calculate a self–consistent field starting from a
two–body interaction parametrized from structure and decay data.

The use of a surface term restoring the nuclear radius simplifies standard
approaches and offers a good simultaneous description of ground state properties
and of the decay width.

Moving the radius of the α–cluster closer to the geometric contact radius and an
extension of the method to axially deformed systems are currently under
investigation.

2A.D. & D.S. Delion, J. Phys. G 52 (6), 055107 (2025).
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