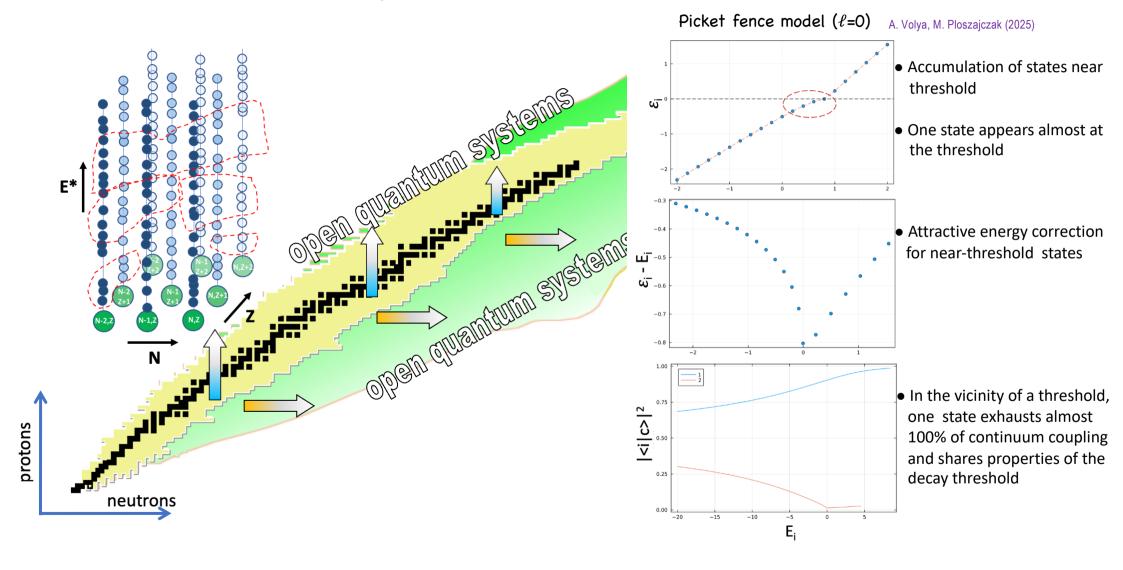
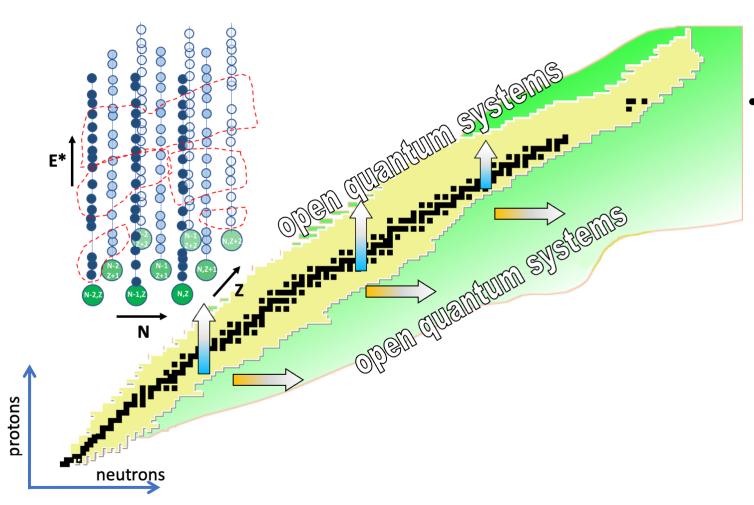
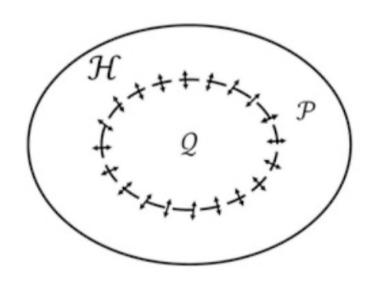

European Nuclear Physics Conference 2025


Outline


- 1. Why do we care about the continuum?
- 2. Shell model for open quantum systems
 - NN interaction in different regimes of binding
 - Configuration mixing in open quantum systems
- 3. Near-threshold states and origin of clustering
 - Near-threshold collectivization: γ -transitions
 - Role of near-threshold states in nuclear astrophysics
 - Mimicry mechanism in resonances
 - Rise and fall of $\alpha\text{-clustering}$ in ^8Be
- 4. Message to take

neutrons



 Any comprehensive theory of threshold states should both ensure the unitarity and include coupling between discrete and scattering states

Continuum shell model

Shell model for open quantum systems Non-hermitian Quantum Mechanics in Hilbert space

C. Mahaux, H.A. Weidenmüller, « Shell Model Approach to Nuclear Reactions » (North-Holland Publishing Company, 1969)

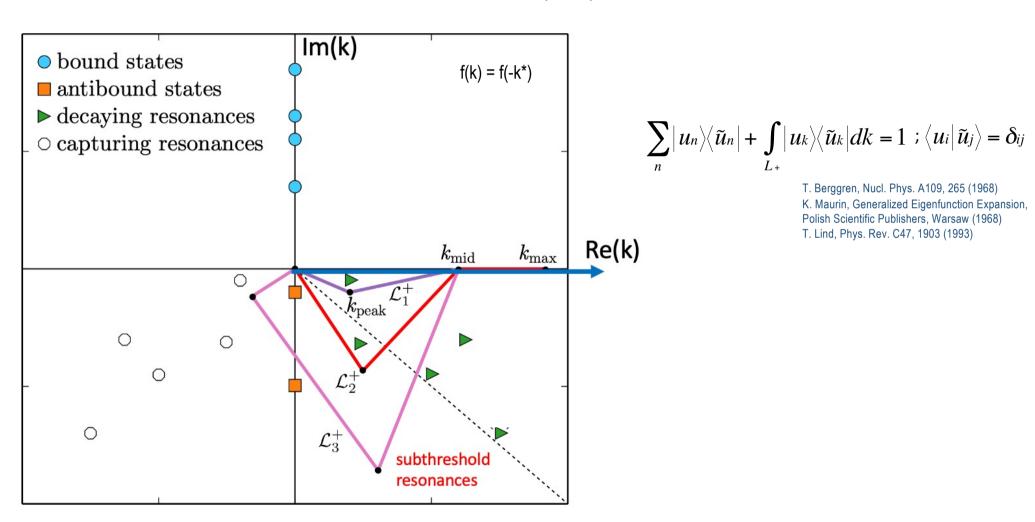
J. Okołowicz, M. P., I. Rotter, Physics Reports 374, 271 (2003) Shell model embedded in the continuum (SMEC)

$$H^{(SM)} \rightarrow \mathcal{H}^{eff}(E) = H'(E) - (i/2)V(E)V^{T}(E)$$
[N×N] [N×N] [N×K] [k×N]
$$= H^{(SM)} + u(E) - (i/2)w(E)$$
Hermitian Anti-hermitian

Complex-symmetric eigenvalue problem for non-hermitian Hamiltonian

Coupling to the environment (in P) cannot be reduced to refitting the Hamiltonian of the *CQS*

Open QS solution in Q space


$$\frac{\mathcal{H}_{QQ}^{eff} |\Psi_{\alpha}\rangle = \mathcal{E}_{\alpha}(E) |\Psi_{\alpha}\rangle}{\langle \Psi_{\tilde{\alpha}} | \mathcal{H}_{QQ}^{eff} = \mathcal{E}_{\alpha}^{*}(E) \langle \Psi_{\tilde{\alpha}} | \Psi_{\alpha}\rangle} \longleftarrow \langle \Psi_{\tilde{\alpha}} | \Psi_{\beta} \rangle = \delta_{\alpha\beta}$$

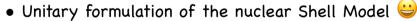
$$\Psi_{\alpha} = \sum_{i} b_{\alpha i} \Phi_{i}^{(\text{SM})} \implies \Psi_{E}^{c} \sim \sum_{\alpha} c_{\alpha} \Psi_{\alpha}$$

For bound states: $\mathcal{E}_a(E)$ is real. Physical resonances correspond to the poles of the scattering matrix

- Entrance and exit reaction channels defined
 - → Shell model and reaction theory reconciled

Shell model for open quantum systems Gamow shell model (GSM)

Shell model for open quantum systems Gamow shell model (GSM)

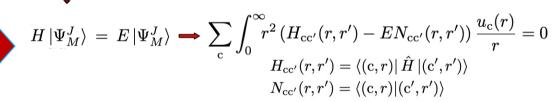

Slater determinant representation

$$\begin{split} \left|SD_{i}\right\rangle = \left|u_{i_{1}}\dots u_{i_{A}}\right\rangle &\implies \sum_{k}\left|SD_{k}\right\rangle\!\!\left\langle SD_{k}\right| \cong 1 \\ &\text{N. Michel et al, PRL 89, 042502 (2002)} \\ &\text{N. Michel, et al, J. Phys. G37, 064042 (2010)} \end{split}$$

- Complex-symmetric eigenvalue problem for hermitian Hamiltonian
- Center-of-mass handled by recoil term in the Hamiltonian:

$$H \to H + \frac{1}{M_{\text{core}}} \sum_{(i < j) \in \text{val}} \mathbf{p}_i \cdot \mathbf{p}_j$$

• No identification of reaction channels



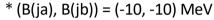
N. Michel, M.Płoszajczak, «Gamow Shell Model: The Unified Theory of Nuclear Structure and Reactions » Lecture Notes in Physics, Vol. 983, (Springer Verlag, 2021)

Coupled-channel representation

$$|\Psi_{M}^{J}\rangle = \sum_{\mathbf{c}} \int_{0}^{+\infty} \frac{|(\mathbf{c}, r)_{M}^{J}\rangle}{|(\mathbf{c}, r)\rangle} \frac{u_{\mathbf{c}}^{JM}(r)}{r} r^{2} dr$$

$$|(\mathbf{c}, r)\rangle = \hat{\mathcal{A}}[|\Psi_{\mathrm{T}}^{J_{\mathrm{T}}}; N_{T}, Z_{T}\rangle \otimes |r| L_{\mathrm{CM}} |J_{\mathrm{int}}| J_{\mathrm{P}}; n, z\rangle]_{M}^{J}$$

- Entrance and exit reaction channels defined
 - → Unification of nuclear structure and reactions



Y. Jaganathen et al, PRC 88, 044318 (2014)

K. Fossez et al., PRC 91, 034609 (2015)

A. Mercenne et al., PRC 99, 044606 (2019)

Shell model for open quantum systems NN interaction in different regimes of binding

^{* (}B(ja), B(jb)) = (-1, -10) MeV

^{* (}B(ja), B(jb)) = (+1, -10) MeV

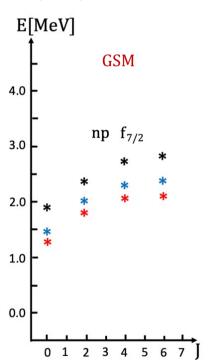
Dependence of V_{nn}/V_{pp} on $S_n - S_p$ asymmetry

$\ell_{\rm j}$ J^{π}	$S_p[MeV]$	$S_n[MeV]$	V_{nn}/V_{pp}
P _{1/2} 2 ^{+.}	10	-1	0.39
,	1	-1	0.58
d _{5/2} 2+-	10 1	-1 -1	0.83 0.835
4+	_	_	
4+	10 1	-1 -1	0.75 0.84

• Strong asymmetry of V_{nn} and V_{pp} for large $|S_n - S_p|$ and low $\boldsymbol{\ell}_j$

Strong reduction of np interaction in weakly bound/unbound nuclei:

~50% reduction in *p*-shell


Shell model for open quantum systems

NN interaction in different regimes of binding

* (B(ja), B(jb)) = (-10, -10) N	⁄leV
* (B(ja), B(jb)) = (-1, -10) M	leV

^{* (}B(ja), B(jb)) = (+1, -10) MeV

Strong reduction of np interaction in weakly bound/unbound nuclei: ~50% reduction in p-shell

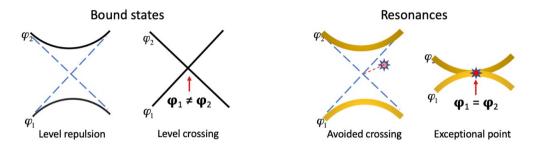
Dependence of V_{nn}/V_{pp} on $S_n - S_p$ asymmetry

$\ell_{\rm j}$ J^{π}	S _p [MeV]	S _n [MeV]	V_{nn}/V_{pp}
P _{1/2} 2 ⁺	· 10	-1 -1	0.39 0.58
d _{5/2} 2 ⁺		-1	0.83
	1	-1	0.835
4+	10 1	-1 -1	0.75 0.84

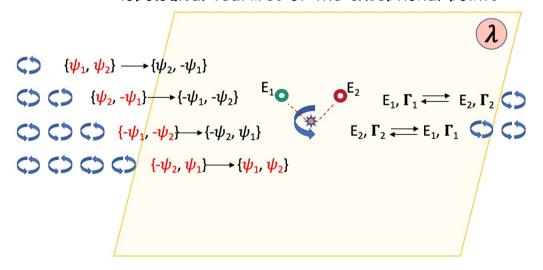
• Strong asymmetry of V_{nn} and V_{pp} for large $|S_n - S_p|$ and low ℓ_j

Dependence of spectroscopic factors on $S_n - S_p$ asymmetry

Spectroscopic factors for the knockout of a $p_{3/2}$ nucleon from the 3/2- g.s. of 9 C and 9 Li to the g.s. of 8 B, 8 He, 8 B, and 8 Li


		${}_{6}C \rightarrow {}_{8}C$	$^9\text{Li} \rightarrow {}^8\text{He}$	${}_{6}C \rightarrow {}_{8}B$	$^{9}\text{Li} \rightarrow {}^{8}\text{Li}$
Model	$N_{\rm cont}$	14.22	13.94	1.30	4.06
HO-SM	0	0.86	0.85	0.95	0.96
GSM-ps	3	0.67	0.67	0.98	0.98
GSM-psd	3	0.60	0.67	0.89	0.88
GSM-psd	4	0.48	0.65	0.89	0.88
GSM-psd _{res}	4	0.48	0.64	0.84	0.85

• If $S_n \gg S_p$, then neutron spectroscopic factor is reduced with respect to proton spectroscopic factor, and vice versa if $S_p \gg S_n$


N. Michel, M.Płoszajczak,

[«]Gamow Shell Model: The Unified Theory of Nuclear Structure and Reactions » Lecture Notes in Physics, Vol. 983, (Springer Verlag, 2021)
J. Wylie, J. Okolowicz et al, Phys. Rev. C 104, L061301 (2021)

Shell model for open quantum systems Configuration mixing in open quantum systems

Topological features of the exceptional points

- Bose-Einstein condensation of gases
 with attractive 1/r interaction
- Microwave cavity experiments
- Atoms coupled to radiation field
- Atom cavity quantum composite
- Optical lattices
- Atomic nuclei

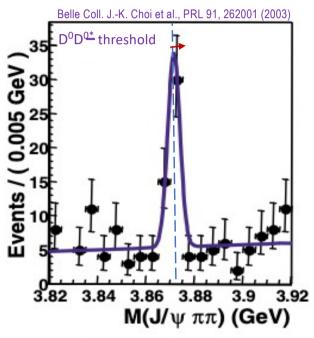
M.R. Zirnbauer et al., Nucl. Phys. A411 (1983) 161
C. Dembowski et al., PRL 86 (2001) 787; PRL 90 (2003) 034101
J. Okołowicz, M. Ploszajczak PRC 80 (2009) 034619

More in the talk of D. Cardona Ochoa on Monday

 α -clustering "... α -cluster states can be found in the proximity of α -particle decay threshold..."

K. Ikeda, N. Takigawa, H. Horiuchi, Prog. Theor. Phys. Suppl. 464 (1968)

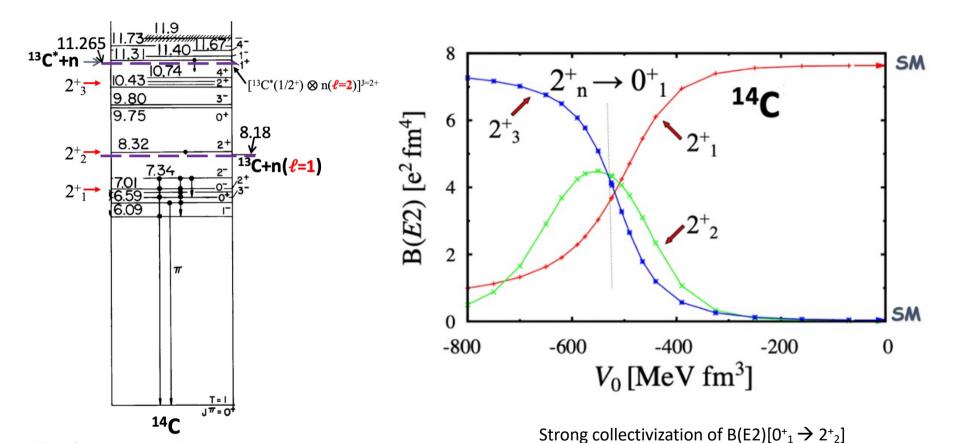
 α -clustering "... α -cluster states can be found in the proximity of α -particle decay threshold..."


K. Ikeda, N. Takigawa, H. Horiuchi, Prog. Theor. Phys. Suppl. 464 (1968)

But this is only the tip of the iceberg!

11 C + n 18721 $^{11}B + p$ 15957 9 Li + 2n E=7654 $\Gamma = 0.0093$ 3/2 E=0 $\Gamma = 0$ ¹¹Li ¹²C 5/2⁺ E=11600(20) $\frac{1/2^{-}}{13}$ E=3487(40 Γ F= 36(15) E=3487(40) $\Gamma_{\rm p} = 12(5)$ 7 Li + α 8664 E=0 $\Gamma = 660(20)$ $^{14}O + p - 1270$ 3/2 15F $^{11}\mathbf{B}$

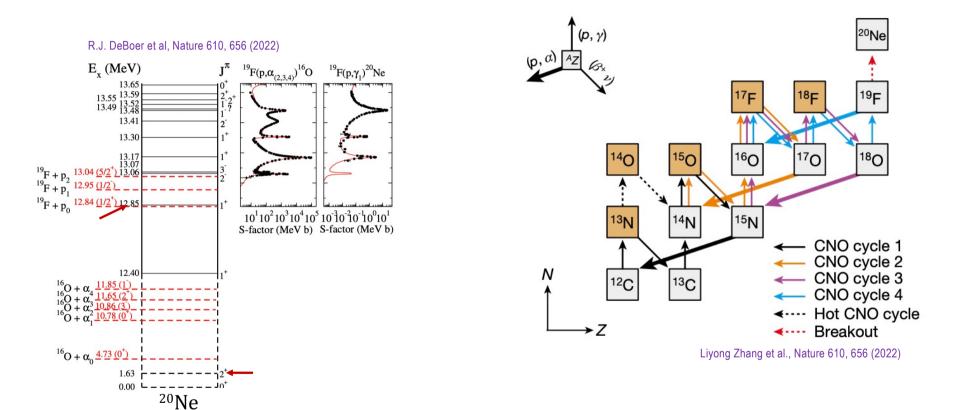
- Other cases: ⁶He, ⁶Li, ⁷Be, ⁷Li, ¹¹O, ¹¹C, ¹⁷O, ²⁰Ne, ²⁶O,...
- Various clusterings: 2p, 2n, ³He, ³H, ...


Threshold effects in multiquark systems

$$B^\pm o K^\pm \pi^+ \pi^- J/\psi$$
 M_X = 3872 +/- 0.6 (stat) +/- 0.5 (syst) MeV ($M_{D^0} + M_{D^{*0}}$) = 3871.1 +/- 1 MeV

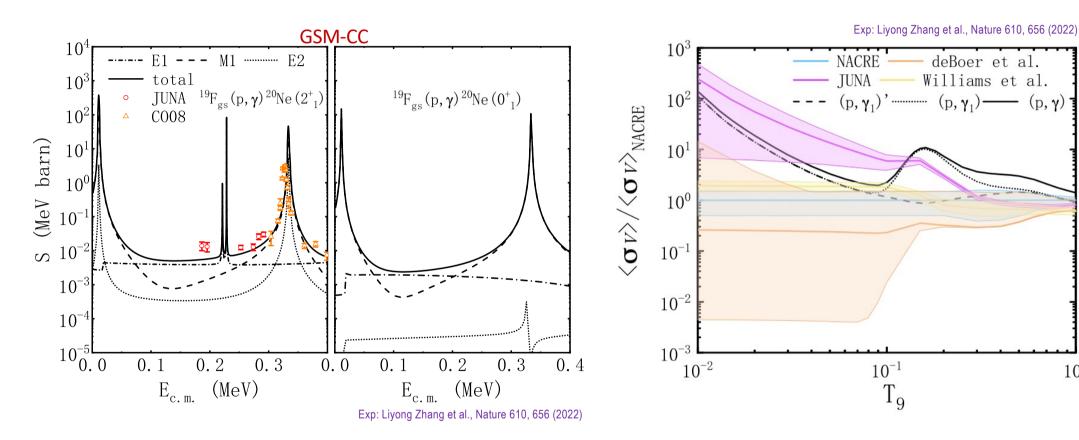
- Natural explanation provided by the OQS perspective:
 - Correlated (clustered) states near the thresholds of the reaction channel are a consequence of the collective rearrangement of the wave functions caused by mutual coupling through the continuum

Near-threshold collectivization: γ -transitions in ^{14}C


due to the nearby exceptional point

 $[^{13}\text{C}(1/2^{\text{-}}) \otimes \text{n}(\ell=1)]^{J=2+}$ $[^{13}\text{C}(K^{\pi}) \otimes \text{n}(\ell_{\text{i}})]^{J}$

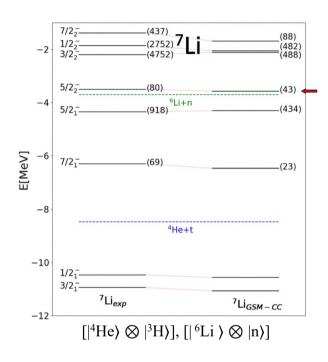
 $K^{\pi}=1/2^{+}_{1}$, $3/2^{-}_{1}$, $5/2^{+}_{1}$, $5/2^{+}_{2}$, $3/2^{+}_{1}$, $7/2^{+}_{1}$, $5/2^{-}_{1}$, $3/2^{-}_{1}$


M. Płoszajczak and J. Okołowicz, J. Phys.Conf. Ser. 1643, 012156 (2020)

Near-threshold states and origin of clustering Role of near-threshold states in nuclear astrophysics

What is the effect of 1+ resonance at ~10 keV above the proton emission threshold on the S-factor?

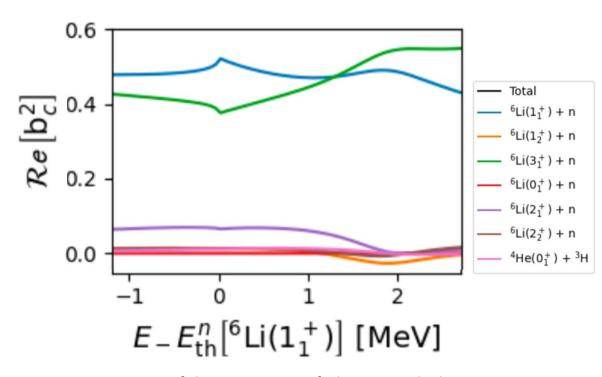
Near-threshold states and origin of clustering Role of near-threshold states in nuclear astrophysics


• The decay to the 2+ first excited state in ²⁰Ne dominates

X.B. Wang, et al, Phys. Rev. C 110, L061601 (2024)

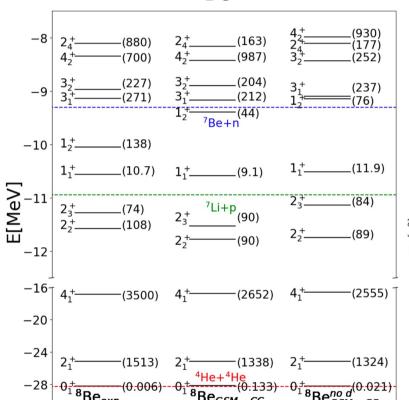
• GSM-CC reaction rates are significantly larger than in NACRE database

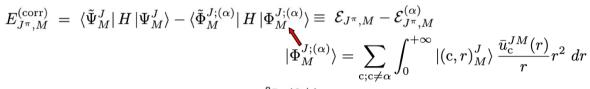
 10^{0}

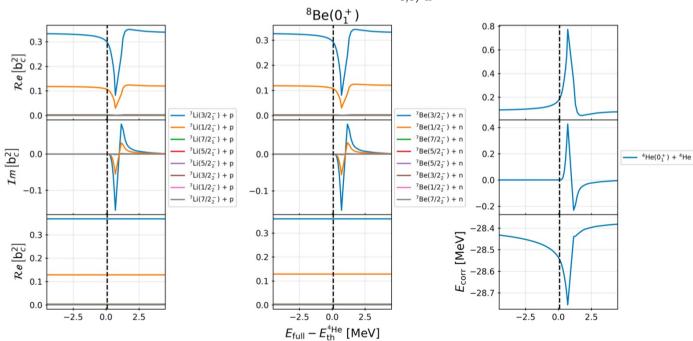

Near-threshold states and origin of clustering Mimicry mechanism in resonances

• Hamiltonian: 1-body potential, 2-body FHT interaction
H. Furutani et al, Prog. Theor. Phys. 62, 981 (1979)

³H wave functions calculated using N³LO_(2-body) interaction


• Channels: ${}^{6}\text{Li}(K^{\pi})$: $K^{\pi}=1_{1}^{+}$, 1_{2}^{+} , 3_{1}^{+} , 0_{1}^{+} , 2_{1}^{+} , 2_{2}^{+} n: $\ell_{j} = s_{1/2}$, $p_{1/2}$, $p_{3/2}$, $d_{3/2}$, $d_{5/2}$, $f_{5/2}$, $f_{7/2}$ ${}^{3}\text{H(L)}$: $L \equiv {}^{2\text{Jint}+1}[L_{\text{CM}}]_{JP} = {}^{2}\text{S}_{1/2}$, ${}^{2}\text{P}_{1/2}$, ${}^{2}\text{P}_{3/2}$, ${}^{2}\text{D}_{3/2}$, ${}^{2}\text{D}_{5/2}$, ${}^{2}\text{F}_{5/2}$, ${}^{2}\text{F}_{7/2}$


• Structure of the resonance w.f. changes with changing energy as a result of the alignment (*mimicry*) with the nearby reaction channel


Rise and fall of α -clustering in 8Be

Continuum coupling correlation energy (GSM-CC)

Mass partitions:

 $[|^4\text{He}\rangle \otimes |^4\text{He}\rangle], [|^7\text{Li}\>\rangle \otimes |p\rangle], [|^7\text{Be}\>\rangle \otimes |n\rangle], [|^6\text{Li}\>\rangle \otimes |d\rangle]$

J.P. Linares Fernandez, et al, Phys. Rev. C 108, 044616 (2023)

Message to take

 Near-threshold eigenstates of open quantum systems have unique properties which distinguish them from eigenstates of well-bound closed quantum systems

The richness of nuclear interaction and the existence of nucleons in two distinct states (proton/neutron) make studies on the near-threshold phenomena in atomic nucleus unique

- Near-threshold phenomena are terra incognita of nuclear physics:
 - Collectivization of wave functions due to the coupling to decay channel(s)
 - Formation of clusters/correlations which carry an imprint of nearby decay channel(s)
 - Modification of NN interaction/spectroscopic factors

-

Essential role of unitarity!

- Deeper understanding of near-threshold phenomena in the shell model for open quantum systems will help to define new territory of nuclear spectroscopy studies:
 - γ -selection rules for in- and out-band transitions in resonance bands
 - Coupling of collective and single-particle motion in the continuum
 - Violation of mirror symmetry/isospin symmetry
 - New kinds of near-threshold clustering: ²H, ³H, ³He, ³n, ⁴n, ...
 - Effects of coalescing resonances in nuclear spectroscopy and reactions
 -

Special thanks:

Nicolas Michel IMP/CAS Lanzhou/Beijin, China

Witek Nazarewicz MSU/FRIB East Lansing, USA

David Cardona Ochoa GANIL, France

Alan Dassie GANIL, France

Jose PabloLinaresLSU Baton Rouge, USAGuoxiangDongHuzhou University, ChinaXiaobaoWangHuzhou University, ChinaAlexanderVolyaFSU, Tallahassee, USA

Thank You