European Nuclear Physics Conference 2025

Contribution ID: 249

Type: Poster

Preliminary Results on the Gamma-Spectroscopy of 229Ac Following the Beta Decay of 229Ra

The isotope ²²⁹Th is of particular interest due to its exceptionally low-energy isomeric state (\sim 8.2 eV), which can be studied via vacuum ultraviolet (VUV) spectroscopy, and holds great potential for the development of a nuclear clock [1,2].

Understanding this isomer's properties, including its excitation and decay modes, is hereby essential and involves investigating the nuclear structure in the actinide region. In recent work at ISOLDE the isomer was populated via the beta-decay of ²²⁹Ac and allowed to observe its radiative decay [2,3]. The odd-even nucleus ²²⁹Ac, as the part of the beta-decay chain from ²²⁹Ra to ²²⁹Th, is directly linked to the population and depopulation of nuclear states that influence the feeding of the isomer. However, despite its relevance, the structure of ²²⁹Ac remains poorly studied, with little experimental data available.

To address this, we have performed a gamma-spectroscopy study of ²²⁹Ac following the beta-decay of ²²⁹Ra. The data were collected at the ISOLDE facility at CERN using the ISOLDE Decay Station (IDS) [4], which provides high-resolution gamma-ray detection capabilities. This study aims to refine the level scheme of ²²⁹Ac, identify key transitions, and improve our understanding of the nuclear structure in this region. The preliminary results presented in this work, aim to contribute to a more comprehensive picture of the nuclear properties of the actinide region of the nuclear chart.

[1] C.Zhang, T.Ooi, J.S.Higgins et al., Frequency ratio of the ^{229m}Th nuclear isomeric transition and the ⁸⁷Sr atomic clock, Nature 633, 63–70 (2024).

[2] S.Kraemer, J.Moens, M.Athanasakis-Kaklamanakis et al., Observation of the radiative decay of the ^{229m}Th nuclear clock isomer, Nature 617, 706–710 (2023).

[3] S.V.Pineda, P.Chhetri, S.Bara, Y.Elskens et al., Radiative decay of the ²²⁹Th nuclear clock isomer in different host materials, Phys. Rev. Research 7, 013052 (2024).

[4] ISOLDE Decay Station (IDS), http://isolde-ids.web.cern.ch/

Author: Dr SATRAZANI, Magda (KU Leuven)

Presenter: Dr SATRAZANI, Magda (KU Leuven)

Session Classification: Poster session

Track Classification: Nuclear Structure, Spectroscopy and Dynamics