European Nuclear Physics Conference 2025

Contribution ID: 270

Type: Poster

Investigation of breakup of 10 B by 209 Bi

Recently several exclusive breakup studies have been reported with stable weakly bound α cluster nuclei like ^{6,7}Li and ⁹Be ($E_{th} < 2.5$ MeV). A number of interesting observations and features related to breakup of projectile/ejectile in the vicinity of target nucleus have been revealed. There are very few exclusive charged particle coincidence studies performed for the investigation of cluster structure of ¹⁰B nucleus. ¹⁰B nucleus can directly break into its various cluster configurations, *viz.*, ⁶Li+ α , $\alpha+\alpha+d$, ⁸Be+d, and ⁹Be+p with breakup thresholds (E_{th}) of 4.46, 5.93, 6.03, and 6.59 MeV respectively. There can also be transfer of few nucleon(s) between target and projectile followed by the breakup of unbound/weakly bound ejectiles. In the present study we are probing the cluster structure of ¹⁰B nucleus using breakup and transfer followed by breakup reactions.

The experiment was performed using ¹⁰B beam of 54 MeV energy using the 14UD BARC-TIFR Pelletron-LINAC Facility, Mumbai. A self-supporting foil of ²⁰⁹Bi of thickness $\sim 1 \text{ mg/cm}^2$ was used as target. Double sided ΔE -E type Silicon strip detector telescope array covering wide angular range was used for the measurement of the outgoing breakup fragments.

In the present work investigation of 2α coincident events in ${}^{10}B+{}^{209}Bi$ reaction have been performed. The relative energy spectra between two α particles detected in coincidence peaks at ~ 92 keV that corresponds to the decay of ${}^{8}Be$ nucleus into 2α particles from its ground state. It shows that most of the 2α coincident events are resulting from ${}^{8}Be_{g.s.}$ decay. The tail part of ${}^{8}Be(2^{+}, 3.03 \text{ MeV})$ was also seen in the relative energy spectra. These 2α coincident events may be produced in various direct breakup of ${}^{10}B \ e.g. \ {}^{10}B^* \rightarrow {}^{8}Be+d$ or there can be transfer followed by breakup of ejectiles. The ejectile breakup modes after n, p, and d stripping reactions are: ${}^{9}B \rightarrow \alpha + \alpha + p, {}^{9}Be^* \rightarrow \alpha + \alpha + n$ ($E_{th}=1.57 \text{ MeV}$) and ${}^{8}Be \rightarrow \alpha + \alpha$ respectively. The energy ($E_{8_{Be}}$) and angle ($\theta_{8_{Be}}$) of ${}^{8}Be$ prior to the breakup into two α particles were reconstructed using momentum conservation. Kinematical lines of ${}^{8}Be$ or energy ($E_{8_{Be}}$)-angle ($\theta_{8_{Be}}$) correlation plot indicates that transfer followed by breakup of ejectiles is a dominant mechanism for 2α coincident events in ${}^{10}B+{}^{209}Bi$ reaction. Also various direct breakup modes of ${}^{10}B$ nucleus is also being investigated. Result from both breakup and transfer followed by breakup reaction will be presented in the conference.

Authors: MISHRA, Prabhat (Nuclear Physics Division, Bhabha Atomic Reseach Centre and Homi Bhabha National Institute, Mumbai, India); Dr PANDIT, S. K. (Nuclear Physics Division, Bhabha Atomic Reseach Centre and Homi Bhabha National Institute, Mumbai, India); Dr PARKAR, V. V. (Nuclear Physics Division, Bhabha Atomic Reseach Centre and Homi Bhabha National Institute, Mumbai, India); Dr MAHATA, K. (Nuclear Physics Division, Bhabha Atomic Reseach Centre and Homi Bhabha National Institute, Mumbai, India); Dr MAHATA, K. (Nuclear Physics Division, Bhabha Atomic Reseach Centre and Homi Bhabha National Institute, Mumbai, India); Dr SHRIVASTAVA, A. (Nuclear Physics Division, Bhabha Atomic Reseach Centre and Homi Bhabha National Institute, Mumbai, India); Dr K., Ramachandran (Nuclear Physics Division, Bhabha Atomic Reseach Centre and Homi Bhabha National Institute, MUMBAI); Dr KUMAR, Vineet (Nuclear Physics Division, Bhabha Atomic Reseach Centre and Homi Bhabha National Institute, MUM-BAI); Ms KAUR, Satbir (Nuclear Physics Division, Bhabha Atomic Reseach Centre and Homi Bhabha National Institute, Mumbai, India); Dr DHURI, Sangeeta (Nuclear Physics Division, Bhabha Atomic Reseach Centre and Homi Bhabha National Institute, Mumbai, India); Dr DHURI, Sangeeta (Nuclear Physics Division, Bhabha Atomic Reseach Centre and Homi Bhabha National Institute, Mumbai, India); Dr CHAVAN, Arati (Vivekanand Education Society's College of Arts, Science and Commerce, Mumbai, India); Dr DHURI, Sangeeta (Nuclear Physics Division, Bhabha Atomic Reseach Centre and Homi Bhabha National Institute, Mumbai, India); Mr M., Prasanna (Department of Physics, Rani Channamma University, Belagavi, India); Dr RATHI, S. (Vivekanand Education Society's College of Arts, Science and Commerce, Mumbai, India);

Presenter: MISHRA, Prabhat (Nuclear Physics Division, Bhabha Atomic Reseach Centre and Homi Bhabha National Institute, Mumbai, India)

Session Classification: Poster session

Track Classification: Nuclear Structure, Spectroscopy and Dynamics