

PROBING SHORT RANGE CORRELATIONS IN

HEAVY-ION DOUBLE CHARGE EXCHANGE REACTIONS

Laboratori Nazionali del Sud

C. Garofalo^{1,2}, F. Cappuzzello^{1,2}, M. Cavallaro², H. Lenske³ for the NUMEN collaboration

¹ Dipartimento di Fisica e Astronomia "E. Majorana", Università di Catania, Catania, Italy ² INFN- Laboratori Nazionali del Sud, Catania, Italy

³ Institut fur Theoretische Physik, Justus-Liebig-Universitat Giessen, D-35392 Giessen, Germany

➤ Short range – conjecture

1. NUMEN PROJECT & DCE REACTION

There is also the Multi-nucleon Transfer Double Charge Exchange (TDCE) [6]

3. NUMERICAL RESULTS

Note: U_{π} & TMEs were derived in closure approximation and using the collinear approximation.

n = 1, 2

$$I_{ij}(n) = \int d^3r \, r^n \, U_{ij}(r)$$

$$\langle \mathbf{r} \rangle_{ij} = \frac{\int d^3r \, r U_{ij}(r)}{\int d^3r \, U_{ij}(r)}$$

$$\int d^3r \, r^2 U_{ii}(r)$$

system

7.5e-005

the DCE transition

• ${}^{9}\text{Be} \rightarrow {}^{9}\text{He}$

 $^{18}O \rightarrow ^{18}Ne$

 $^{28}\text{Si} \rightarrow ^{28}\text{Mg}$

 $^{40}\text{Ca} \rightarrow ^{40}\text{Ar}$

 $^{48}\text{Ca} \rightarrow ^{48}\text{Ti}$

 76 Ge \rightarrow 76 Zn

Normalized linear radial monopole moments→potential radius; Quadratic radial monopole moments \rightarrow extension of the potential with respect to the origin **Potential distribution variance**→ potential spatial extension

Components

00

→ potential spatial distribution

2. MDCE MECHANISM

 $d\sigma_{\alpha\beta}^{(1)} \propto \sum_{M_A \in \alpha, M_b, M_B \in \beta} |M_{\alpha\beta}^{(1)}(\vec{k}_{\alpha}\vec{k}_{\beta})|^2 d\Omega_{\alpha\beta}$,

$$M_{\alpha\beta}^{(1)}\left(\vec{k}_{\alpha}\vec{k}_{\beta}\right) = \langle \chi_{\beta}^{(-)} \mid \langle B \mid T_{\pi N}G_{\pi C}T_{\pi N} \mid A \rangle D_{\pi^{q}} D_{\pi^{q'}} \langle B' \mid T_{\pi N}G_{\pi'C'}T_{\pi N} \mid A' \rangle |\chi_{\alpha}^{(+)} \rangle$$

(DSCE) [4]

Exit channel β :

➤ Second SCE-type transition

Intermediate channel:

- >SCE-excited nucleus C
- \triangleright Intermediate propagator $G_{\pi C}$

Incident channel α :

▶ Pion-nucleon scattering leading to excitation of np-1 or pn⁻¹ SCE particle—hole configurations

7.0e-005 6.5e-005 6.0e-005 5.5e-005 5.0e-005 4.5e-005 4.0e-005 3.5e-005

independent with respect to the nuclear

The P-wave TME increase strongly with exceeding momentum, strength of the S-wave TME by large factors.

1.89 0.10 11 1.04 0.03 0.06 1.49 01 0.05 1.41 1.20 0.04 12 1.06 0.03

➤ The MDCE pion potential covers a radius of

 $\langle \bar{r} \rangle_{ij} (fm)$

 v_{ij} (fm²)

around the mean value is present.

about 1 fm & only a small dispersion

 $\langle \bar{r} \rangle_{ii}$ is the mean value of the normalized moments with respect to A for each component, having averaged with respect to the momentum

> The imaginary part of TMEs is of moderate

 \triangleright Product propagator $D_{\pi^q\pi^{q'}}$

Strong counterpart of the neutrino potential:

> Pion potentials

t channel - exchange of the π^{\pm} :

PION-NUCLEON ISOVECTOR 1 • $T_0 \rightarrow S$ -WAVE

- $T_1 \rightarrow P\text{-WAVE}$ $T_2 \rightarrow P\text{-WAVE}$
- $U_{\pi}(\vec{x}) = \int \frac{d^3k}{(2\pi)^3} T_{\pi N} e^{i \vec{k} \cdot \vec{x}} g_{\pi C}^{(+)} T_{\pi N}$

 $T_{\pi N}(\boldsymbol{p}, \boldsymbol{p}') = \left[\boldsymbol{T_0}(s_{\pi N}) + \frac{1}{m_{\pi}^2} \left(\boldsymbol{T_1}(s_{\pi N}) \ \boldsymbol{p} \cdot \boldsymbol{p}' + i \ \boldsymbol{T_2}(s_{\pi N}) \ \boldsymbol{\sigma} \cdot (\boldsymbol{p} \times \boldsymbol{p}') \right) \right] \boldsymbol{T_{\pi}} \cdot \boldsymbol{\tau_N}$ > Transition Matrix Elements (TMEs)

 $W_{AB} = \langle B | T_{\pi N} G_{\pi C} T_{\pi N} | A \rangle \rightarrow W_{AB} \sim \sum_{i,j} \mathcal{M}_{AB}^{(ij)}$ nine partial TMEs

- REFERENCES
- [1] F. Cappuzzello et al., Prog. Part. Nucl. Phys. 128, 103999 (2023). [2] M. Agostini et al., Rev. Mod. Phys 95, 025002 (2023).
- [3] F. Cappuzzello et al., EPJ A **54**, 72 (2018).
- [4] J. I. Bellone et al., Phys. Lett. B 807, 135528 (2020).
- [5] H. Lenske et al., Universe 10, 202 (2024).
- [6] L. Ferreira et al., PRC 105, 014630 (2022).

4. CONCLUSIONS & FUTURE PERSPECTIVES

- The pion potentials are of pronounced short-range character with radii of $\sim 1 fm$;
- > MDCE transitions proceed on short-range NN correlations as expected for $0\nu\beta\beta$ decay;
- > MDCE is a universal mechanism becoming independent of the nuclear system for medium and heavy nuclei, at the level of a few per cent;
- > Differential cross section to compare with the experimental data: in progress!

