European Nuclear Physics Conference 2025

Contribution ID: 5 Type: Poster

Overview of unstable nuclear state studies in dissociation of relativistic nuclei

Ensembles of He and H isotopes can be studied with unique completeness and resolution in nuclear emulsion layers longitudinally exposed to relativistic nuclei [1,2]. Determination of the invariant mass of their pairs or triplets by emission angles in the velocity conservation approximation is sufficient to identify a number of unstable states ${}^{-8}\text{Be}(0^+)$, ${}^{8}\text{Be}(2^+)$, ${}^{9}\text{B}$, ${}^{12}\text{C}(0_2^+)$, ${}^{12}\text{C}(0_2^-)$, ${}^{6}\text{Be}[3]$.

The BECQUEREL experiment [4,5], using this approach, is aimed at searching for the α -particle Bose-Einstein condensate (α BEC), an unstable of S-wave α -particle state. The 8 Be(0⁺) is associated with 2α BEC, and 12 C(0⁺₂) or the Hoyle state with 3α BEC. In the relativistic fragmentation of heavy nuclei, an enhancement of 8 Be, 9 B and 12 C(0⁺₂) is detected, suggesting their synthesis in the fusion of associated α -particles. The focus of the search is the 4α BEC state of 16 O(0⁺₆) at 660 keV above the 4α threshold, decaying into α^{12} C(0⁺₂) or 2^8 Be. In this context, the status of the analysis of α -particle fragmentation in a nuclear emulsion exposed to 84 Kr nuclei at 950 MeV per nucleon is presented. Secondary stars produced by relativistic neutrons are observed in the nucleus fragmentation cone [4]. The neutron average energy in the parent nucleus system is estimated to be 1.3 MeV [6]

The α BEC search leads to the study of nuclear matter in the region of temperature and density from red giants to supernova. It is characterized by the ratios of 1,2,3 H and 3,4 He. Nuclear emulsion layers exposed to heavy nuclei of several GeV per nucleon at the NICA accelerator complex are optimal for identifying H and He isotopes by multiple scattering, searching for unstable states, and assessing neutron accompaniment. An exposure to 124 Xe nuclei of 3.8 GeV per nucleon, performed at the NICA accelerator complex, allows the use of proven approaches. Parameters of the beam are determined by using the CR-39 track detector by direct crater counting on the Olympus BX63 microscope.

- [1] P.I. Zarubin, Lect. Notes in Phys. 875, Clusters in Nuclei, Volume 3. Springer Int. Publ., 51 (2013); arXiv: 1309.4881.
- [2] D.A. Artemenkov et al., Eur. Phys. J. A 56 250 (2020); arXiv: 2004.10277.
- [3] D. A. Artemenkov et al., arXiv:2409.14814 [nucl-ex]
- [4] A.A. Zaitsev et al., Phys. Lett. B 820 136460 (2021); arXiv: 2102.09541.
- [5] D.A. Artemenkov et al., Phys. At. Nucl. 85, 528 (2022); arXiv: 2206.096.
- [6] A.A. Zaitsev et al., Phys. At. Nucl. 86, 1101 (2023); arXiv: 2307.16465.

Author: ZAITSEV, Andrei (JINR)

Presenter: ZAITSEV, Andrei (JINR)

Session Classification: Poster session

Track Classification: Nuclear Astrophysics