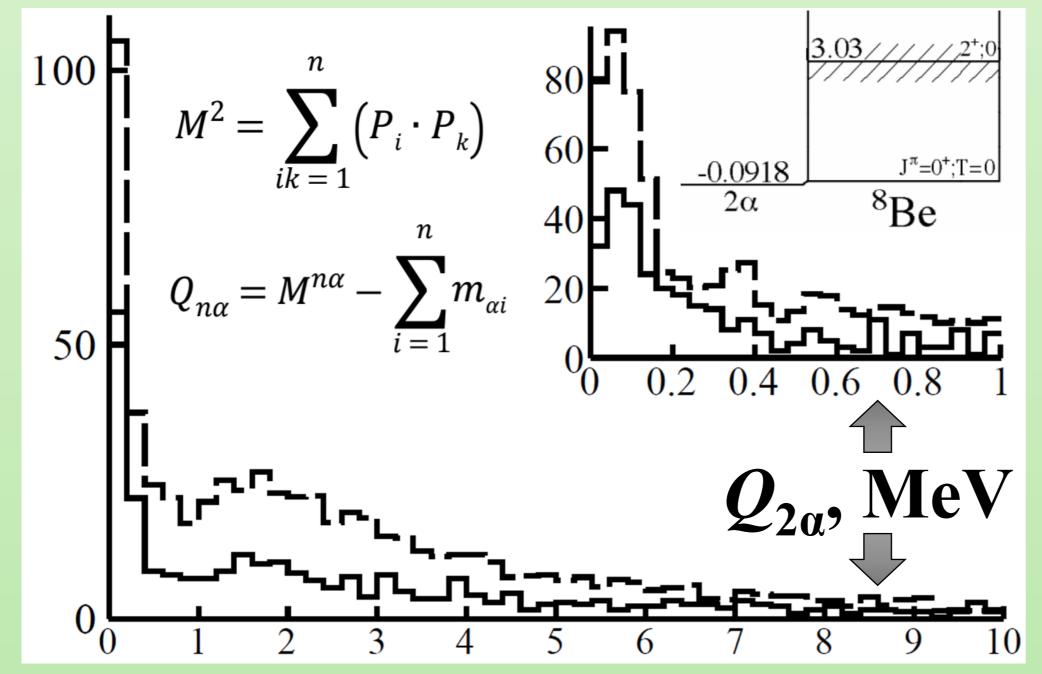


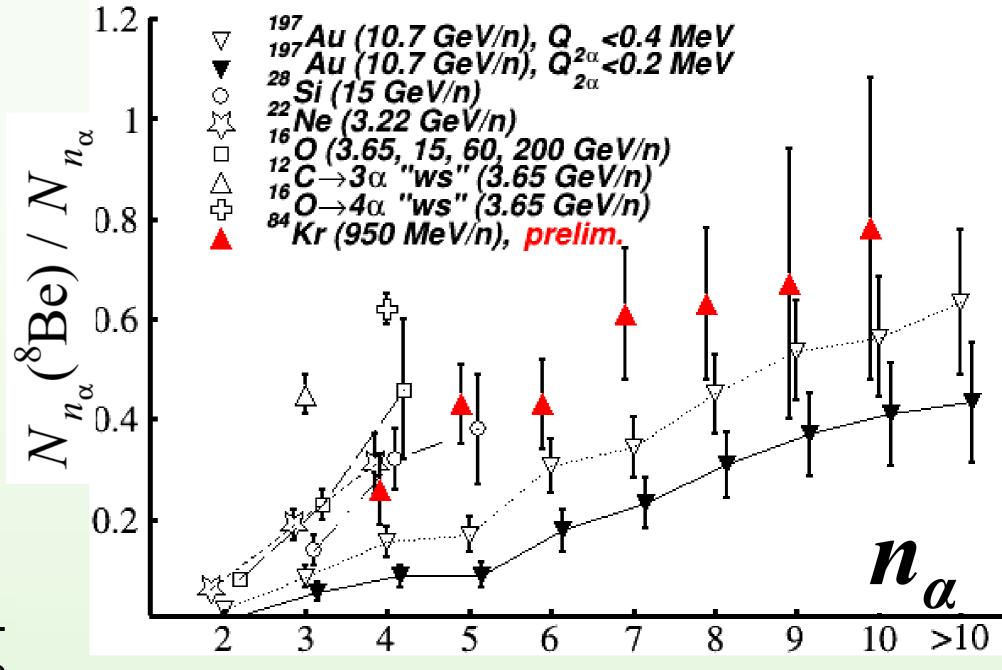
Overview Of Unstable Nuclear State Studies In Dissociation Of Relativistic Nuclei Andrei Zaitsev

Joint Institute for Nuclear Research, Dubna


ABSTRACT

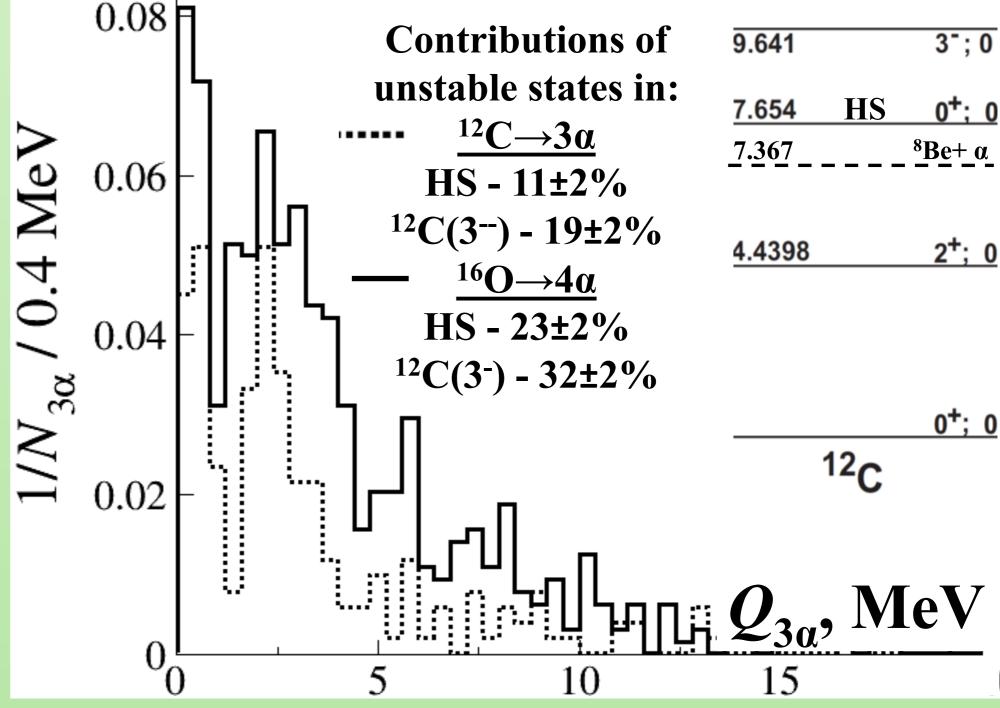
Results are presented on the identification of the unstable WITH nuclei 8Be and 9B and the Hoyle state (HS) in the relativistic FRAGMENTATION OF RELATIVISTIC NUCLEI dissociation of the isotopes ⁹Be, ¹⁰B, ^{10,11,12}C, and ¹⁶O in a nuclear track emulsion (NTE). The main motivation for the study is the prospect of using these states in the search for more complex unstable states that decay with their participation. It is shown that to identify relativistic decays ⁸Be and ⁹B and HS in NTE, it is sufficient to determine the invariant mass as a function of angles in pairs and triples of He and H fragments in the approximation of conservation of momentum per nucleon of the parent nucleus. The observed diversity enables us to assume universality in the formation of nuclear-molecular states near the bond thresholds as a consequence of coalescence of emerging α -particles and nucleons.

INTRODUCTION


Currently, a research focus is on the theoretical concept of αparticle Bose-Einstein condensate (\alpha BEC) - the ultra cold state of several S-wave α-particles near coupling thresholds. The unstable ⁸Be nucleus is described as $2\alpha BEC$, and the ¹²C(0⁺₂) excitation or Hoyle state (HS) as $3\alpha BEC$. Decays $^8Be \rightarrow 2\alpha$ and 12 C(0 $^{+}_{2}$) \rightarrow 8 Beα can serve as signatures for more complex αBEC decays. Thus, the 0⁺₆ state of the ¹⁶O nucleus at 660 keV above the 4\alpha threshold, considered as 4\alpha BEC, can sequentially decay $^{16}O(0^{+}_{6}) \rightarrow \alpha^{12}C(0^{+}_{2})$ or $^{16}O(0^{+}_{6}) \rightarrow 2^{8}Be(0^{+})$. Its search is being carried out in several experiments on fragmentation of light nuclei at low energies. Confirmation of the existence of this and more complex forms of aBEC could provide a basis for expanding scenarios for the synthesis of medium and heavy nuclei in nuclear astrophysics.

PRODUCTION OF ⁸Be_{os} **FRAGMENTATION** IN **RELATIVISTIC NUCLEI**

Number of 2α -pairs $N_{2\alpha}$ over the excitation energy $Q_{2\alpha}$ in the 12 C→3α (solid line) and 16 O→4α (dashed line) coherent dissociation at 3.65A GeV. The contribution of ${}^8\text{Be}_{gs}$ has been determined like $45 \pm 4\%$ in 12 C and $62 \pm 3\%$ in 16 O (6±1% 2^{8} Be).


CORRELATION IN FORMATION OF

B (0.185 MeV) IN DISSOCIATION OF ¹⁰C, ¹¹C AND ¹⁰B

 $^{12}C(0^{+})$ AND $^{12}C(3^{-})$ STATE **HOYLE STATE** DISSOCIATION OF $^{12}C \rightarrow 3\alpha$ AND $^{16}O \rightarrow 4\alpha$ AT 3.65A GeV

CONCLUSION

- Productivity of the nuclear emulsion method in studies nuclear clustering and states of the lowest density and temperature is confirmed.
- Determination of the invariant masses from the fragment emission angles assuming conservation of momentum per nucleon of the parent nucleus allowed identifying the decays of ${}^8\mathrm{Be}(0^+)$, ${}^8\mathrm{Be}(2^+)$, ${}^9\mathrm{B}$, ${}^{12}\mathrm{C}(0^+)$, and ${}^{12}\mathrm{C}(3^-)$.
- The observations of ${}^8\text{Be}(0^+)$ and ${}^{12}\text{C}(0^+)$ points out that conditions of nuclear astrophysics can be reproduced in the relativistic fragmentation.
- Despite relativistic scale unstable states may emerge in final state interactions of lowest energy nuclear physics.
- Progress in microscope image analysis opens up new horizons to the method in nuclear structure studies.